1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
//===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <string>
using namespace llvm;
#define DEBUG_TYPE "constraint-system"
bool ConstraintSystem::eliminateUsingFM() {
// Implementation of Fourier–Motzkin elimination, with some tricks from the
// paper Pugh, William. "The Omega test: a fast and practical integer
// programming algorithm for dependence
// analysis."
// Supercomputing'91: Proceedings of the 1991 ACM/
// IEEE conference on Supercomputing. IEEE, 1991.
assert(!Constraints.empty() &&
"should only be called for non-empty constraint systems");
unsigned LastIdx = NumVariables - 1;
// First, either remove the variable in place if it is 0 or add the row to
// RemainingRows and remove it from the system.
SmallVector<SmallVector<Entry, 8>, 4> RemainingRows;
for (unsigned R1 = 0; R1 < Constraints.size();) {
SmallVector<Entry, 8> &Row1 = Constraints[R1];
if (getLastCoefficient(Row1, LastIdx) == 0) {
if (Row1.size() > 0 && Row1.back().Id == LastIdx)
Row1.pop_back();
R1++;
} else {
std::swap(Constraints[R1], Constraints.back());
RemainingRows.push_back(std::move(Constraints.back()));
Constraints.pop_back();
}
}
// Process rows where the variable is != 0.
unsigned NumRemainingConstraints = RemainingRows.size();
for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) {
// FIXME do not use copy
for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) {
// Examples of constraints stored as {Constant, Coeff_x, Coeff_y}
// R1: 0 >= 1 * x + (-2) * y => { 0, 1, -2 }
// R2: 3 >= 2 * x + 3 * y => { 3, 2, 3 }
// LastIdx = 2 (tracking coefficient of y)
// UpperLast: 3
// LowerLast: -2
int64_t UpperLast = getLastCoefficient(RemainingRows[R2], LastIdx);
int64_t LowerLast = getLastCoefficient(RemainingRows[R1], LastIdx);
assert(
UpperLast != 0 && LowerLast != 0 &&
"RemainingRows should only contain rows where the variable is != 0");
if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0))
continue;
unsigned LowerR = R1;
unsigned UpperR = R2;
if (UpperLast < 0) {
std::swap(LowerR, UpperR);
std::swap(LowerLast, UpperLast);
}
SmallVector<Entry, 8> NR;
unsigned IdxUpper = 0;
unsigned IdxLower = 0;
auto &LowerRow = RemainingRows[LowerR];
auto &UpperRow = RemainingRows[UpperR];
// Update constant and coefficients of both constraints.
// Stops until every coefficient is updated or overflows.
while (true) {
if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size())
break;
int64_t M1, M2, N;
// Starts with index 0 and updates every coefficients.
int64_t UpperV = 0;
int64_t LowerV = 0;
uint16_t CurrentId = std::numeric_limits<uint16_t>::max();
if (IdxUpper < UpperRow.size()) {
CurrentId = std::min(UpperRow[IdxUpper].Id, CurrentId);
}
if (IdxLower < LowerRow.size()) {
CurrentId = std::min(LowerRow[IdxLower].Id, CurrentId);
}
if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) {
UpperV = UpperRow[IdxUpper].Coefficient;
IdxUpper++;
}
if (MulOverflow(UpperV, -1 * LowerLast, M1))
return false;
if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) {
LowerV = LowerRow[IdxLower].Coefficient;
IdxLower++;
}
if (MulOverflow(LowerV, UpperLast, M2))
return false;
// This algorithm is a variant of sparse Gaussian elimination.
//
// The new coefficient for CurrentId is
// N = UpperV * (-1) * LowerLast + LowerV * UpperLast
//
// UpperRow: { 3, 2, 3 }, LowerLast: -2
// LowerRow: { 0, 1, -2 }, UpperLast: 3
//
// After multiplication:
// UpperRow: { 6, 4, 6 }
// LowerRow: { 0, 3, -6 }
//
// Eliminates y after addition:
// N: { 6, 7, 0 } => 6 >= 7 * x
if (AddOverflow(M1, M2, N))
return false;
// Skip variable that is completely eliminated.
if (N == 0)
continue;
NR.emplace_back(N, CurrentId);
}
if (NR.empty())
continue;
Constraints.push_back(std::move(NR));
// Give up if the new system gets too big.
if (Constraints.size() > 500)
return false;
}
}
NumVariables -= 1;
return true;
}
bool ConstraintSystem::mayHaveSolutionImpl() {
while (!Constraints.empty() && NumVariables > 1) {
if (!eliminateUsingFM())
return true;
}
if (Constraints.empty() || NumVariables > 1)
return true;
return all_of(Constraints, [](auto &R) {
if (R.empty())
return true;
if (R[0].Id == 0)
return R[0].Coefficient >= 0;
return true;
});
}
SmallVector<std::string> ConstraintSystem::getVarNamesList() const {
SmallVector<std::string> Names(Value2Index.size(), "");
#ifndef NDEBUG
for (auto &[V, Index] : Value2Index) {
std::string OperandName;
if (V->getName().empty())
OperandName = V->getNameOrAsOperand();
else
OperandName = std::string("%") + V->getName().str();
Names[Index - 1] = OperandName;
}
#endif
return Names;
}
void ConstraintSystem::dump() const {
#ifndef NDEBUG
if (Constraints.empty())
return;
SmallVector<std::string> Names = getVarNamesList();
for (const auto &Row : Constraints) {
SmallVector<std::string, 16> Parts;
for (const Entry &E : Row) {
if (E.Id >= NumVariables)
break;
if (E.Id == 0)
continue;
std::string Coefficient;
if (E.Coefficient != 1)
Coefficient = std::to_string(E.Coefficient) + " * ";
Parts.push_back(Coefficient + Names[E.Id - 1]);
}
// assert(!Parts.empty() && "need to have at least some parts");
int64_t ConstPart = 0;
if (Row[0].Id == 0)
ConstPart = Row[0].Coefficient;
LLVM_DEBUG(dbgs() << join(Parts, std::string(" + "))
<< " <= " << std::to_string(ConstPart) << "\n");
}
#endif
}
bool ConstraintSystem::mayHaveSolution() {
LLVM_DEBUG(dbgs() << "---\n");
LLVM_DEBUG(dump());
bool HasSolution = mayHaveSolutionImpl();
LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n");
return HasSolution;
}
bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const {
// If all variable coefficients are 0, we have 'C >= 0'. If the constant is >=
// 0, R is always true, regardless of the system.
if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; }))
return R[0] >= 0;
// If there is no solution with the negation of R added to the system, the
// condition must hold based on the existing constraints.
R = ConstraintSystem::negate(R);
if (R.empty())
return false;
auto NewSystem = *this;
NewSystem.addVariableRow(R);
return !NewSystem.mayHaveSolution();
}
|