aboutsummaryrefslogtreecommitdiff
path: root/lldb/docs/lldb-gdb-remote.txt
blob: 820f3bd7bbc20b9c678f4b1b0b9ba5e9715641a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
LLDB has added new GDB server packets to better support multi-threaded and
remote debugging. Why? Normally you need to start the correct GDB and the
correct GDB server when debugging. If you have mismatch, then things go wrong
very quickly. LLDB makes extensive use of the GDB remote protocol and we
wanted to make sure that the experience was a bit more dynamic where we can
discover information about a remote target without having to know anything up
front. We also ran into performance issues with the existing GDB remote
protocol that can be overcome when using a reliable communications layer.
Some packets improve performance, others allow for remote process launching
(if you have an OS), and others allow us to dynamically figure out what
registers a thread might have. Again with GDB, both sides pre-agree on how the
registers will look (how many, their register number,name and offsets). We
prefer to be able to dynamically determine what kind of architecture, OS and
vendor we are debugging, as well as how things are laid out when it comes to
the thread register contexts. Below are the details on the new packets we have
added above and beyond the standard GDB remote protocol packets.

//----------------------------------------------------------------------
// "QStartNoAckMode"
//
// BRIEF
//  Try to enable no ACK mode to skip sending ACKs and NACKs.
//
// PRIORITY TO IMPLEMENT
//  High. Any GDB remote server that can implement this should if the
//  connection is reliable. This improves packet throughput and increases
//  the performance of the connection.
//----------------------------------------------------------------------
Having to send an ACK/NACK after every packet slows things down a bit, so we
have a way to disable ACK packets to minimize the traffic for reliable
communication interfaces (like sockets). Below GDB or LLDB will send this
packet to try and disable ACKs. All lines that start with "send packet: " are
from GDB/LLDB, and all lines that start with "read packet: " are from the GDB
remote server:

send packet: $QStartNoAckMode#b0
read packet: +
read packet: $OK#9a
send packet: +



//----------------------------------------------------------------------
// "A" - launch args packet
//
// BRIEF
//  Launch a program using the supplied arguments
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed if the remote target wants to launch a target after
//  making a connection to a GDB server that isn't already connected to
//  an inferior process.
//----------------------------------------------------------------------

We have added support for the "set program arguments" packet where we can
start a connection to a remote server and then later supply the path to the
executable and the arguments to use when executing:

GDB remote docs for this:

set program arguments(reserved) Aarglen,argnum,arg,...

Where A is followed by the length in bytes of the hex encoded argument,
followed by an argument integer, and followed by the ASCII characters
converted into hex bytes foreach arg

send packet: $A98,0,2f566f6c756d65732f776f726b2f67636c6179746f6e2f446f63756d656e74732f7372632f6174746163682f612e6f7574#00
read packet: $OK#00

The above packet helps when you have remote debugging abilities where you
could launch a process on a remote host, this isn't needed for bare board
debugging.

//----------------------------------------------------------------------
// "QEnvironment:NAME=VALUE"
//
// BRIEF
//  Setup the environment up for a new child process that will soon be
//  launched using the "A" packet.
//
// NB: key/value pairs are sent as-is so gdb-remote protocol meta characters
//     (e.g. '#' or '$') are not acceptable.  If any non-printable or
//     metacharacters are present in the strings, QEnvironmentHexEncoded
//     should be used instead if it is available.  If you don't want to
//     scan the environment strings before sending, prefer
//     the QEnvironmentHexEncoded packet over QEnvironment, if it is
//     available.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed if the remote target wants to launch a target after
//  making a connection to a GDB server that isn't already connected to
//  an inferior process.
//----------------------------------------------------------------------

Both GDB and LLDB support passing down environment variables. Is it ok to
respond with a "$#00" (unimplemented):

send packet: $QEnvironment:ACK_COLOR_FILENAME=bold yellow#00
read packet: $OK#00

This packet can be sent one or more times _prior_ to sending a "A" packet.

//----------------------------------------------------------------------
// "QEnvironmentHexEncoded:HEX-ENCODING(NAME=VALUE)"
//
// BRIEF
//  Setup the environment up for a new child process that will soon be
//  launched using the "A" packet.
//
// The only difference between this packet and QEnvironment is that the
// environment key-value pair is ascii hex encoded for transmission.
// This allows values with gdb-remote metacharacters like '#' to be sent.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed if the remote target wants to launch a target after
//  making a connection to a GDB server that isn't already connected to
//  an inferior process.
//----------------------------------------------------------------------

Both GDB and LLDB support passing down environment variables. Is it ok to
respond with a "$#00" (unimplemented):

send packet: $QEnvironment:41434b5f434f4c4f525f46494c454e414d453d626f6c642379656c6c6f77#00
read packet: $OK#00

This packet can be sent one or more times _prior_ to sending a "A" packet.

//----------------------------------------------------------------------
// "QEnableErrorStrings"
//
// BRIEF
//  This packet enables reporting of Error strings in remote packet
//  replies from the server to client. If the server supports this
//  feature, it should send an OK response. The client can expect the
//  following error replies if this feature is enabled in the server ->
//
//  EXX;AAAAAAAAA
//
//  where AAAAAAAAA will be a hex encoded ASCII string.
//  XX is hex encoded byte number.
//
//  It must be noted that even if the client has enabled reporting
//  strings in error replies, it must not expect error strings to all
//  error replies.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed if the remote target wants to provide strings that
//  are human readable along with an error code.
//----------------------------------------------------------------------

send packet: $QEnableErrorStrings
read packet: $OK#00

//----------------------------------------------------------------------
// "QSetSTDIN:<ascii-hex-path>"
// "QSetSTDOUT:<ascii-hex-path>"
// "QSetSTDERR:<ascii-hex-path>"
//
// BRIEF
//  Setup where STDIN, STDOUT, and STDERR go prior to sending an "A"
//  packet.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed if the remote target wants to launch a target after
//  making a connection to a GDB server that isn't already connected to
//  an inferior process.
//----------------------------------------------------------------------

When launching a program through the GDB remote protocol with the "A" packet,
you might also want to specify where stdin/out/err go:

QSetSTDIN:<ascii-hex-path>
QSetSTDOUT:<ascii-hex-path>
QSetSTDERR:<ascii-hex-path>

These packets must be sent  _prior_ to sending a "A" packet.

//----------------------------------------------------------------------
// "QSetWorkingDir:<ascii-hex-path>"
//
// BRIEF
//  Set the working directory prior to sending an "A" packet.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed if the remote target wants to launch a target after
//  making a connection to a GDB server that isn't already connected to
//  an inferior process.
//----------------------------------------------------------------------

Or specify the working directory:

QSetWorkingDir:<ascii-hex-path>

This packet must be sent  _prior_ to sending a "A" packet.

//----------------------------------------------------------------------
// "QSetDisableASLR:<bool>"
//
// BRIEF
//  Enable or disable ASLR on the next "A" packet.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed if the remote target wants to launch a target after
//  making a connection to a GDB server that isn't already connected to
//  an inferior process and if the target supports disabling ASLR
//  (Address space layout randomization).
//----------------------------------------------------------------------

Or control if ASLR is enabled/disabled:

send packet: QSetDisableASLR:1
read packet: OK

send packet: QSetDisableASLR:0
read packet: OK

This packet must be sent  _prior_ to sending a "A" packet.

//----------------------------------------------------------------------
// QListThreadsInStopReply
//
// BRIEF
//  Enable the threads: and thread-pcs: data in the question-mark packet
//  ("T packet") responses when the stub reports that a program has
//  stopped executing.
//
// PRIORITY TO IMPLEMENT
//  Performance.  This is a performance benefit to lldb if the thread id's
//  and thread pc values are provided to lldb in the T stop packet -- if
//  they are not provided to lldb, lldb will likely need to send one to
//  two packets per thread to fetch the data at every private stop.
//----------------------------------------------------------------------

send packet: QListThreadsInStopReply
read packet: OK

//----------------------------------------------------------------------
// jLLDBTraceSupported
//
// BRIEF
//  Get the processor tracing type supported by the gdb-server for the current
//  inferior. Responses might be different depending on the architecture and
//  capabilities of the underlying OS.
//
//  OUTPUT SCHEMA
//   {
//     "name": <string>,
//         Tracing technology name, e.g. intel-pt, arm-etm.
//     "description": <string>,
//         Description for this technology.
//   }
//
//   If no tracing technology is supported for the inferior, or no process is
//   running, then an error message is returned.
//
// NOTE
//  This packet is used by Trace plug-ins (see lldb_private::Trace.h) to
//  do live tracing. Specifically, the name of the plug-in should match the name
//  of the tracing technology returned by this packet.
//----------------------------------------------------------------------

send packet: jLLDBTraceSupported
read packet: {"name":<name>, "description":<description>}/E<error code>;AAAAAAAAA

//----------------------------------------------------------------------
// jLLDBTraceStart
//
// BRIEF
//  Start tracing a process or its threads using a provided tracing technology.
//  The input and output are specified as JSON objects. In case of success, an OK
//  response is returned, or an error otherwise.
//
// PROCESS TRACING
//  This traces existing and future threads of the current process. An error is
//  returned if the process is already being traced.
//
// THREAD TRACING
//  This traces specific threads.
//
// INPUT SCHEMA
//  {
//    "type": <string>,
//        Tracing technology name, e.g. intel-pt, arm-etm.
//
//    /* thread tracing only */
//    "tids"?: [<decimal integer>],
//        Individual threads to trace.
//
//    ... other parameters specific to the provided tracing type
//  }
//
// NOTES
//  - If "tids" is not provided, then the operation is "process tracing",
//    otherwise it's "thread tracing".
//  - Each tracing technology can have different levels of support for "thread
//    tracing" and "process tracing".
//
// INTEL-PT
//  intel-pt supports both "thread tracing" and "process tracing".
//
//  "Process tracing" is implemented in two different ways. If the
//  "perCpuTracing" option is false, then each thread is traced individually
//  but managed by the same "process trace" instance. This means that the
//  amount of trace buffers used is proportional to the number of running
//  threads. This is the recommended option unless the number of threads is
//  huge. If "perCpuTracing" is true, then each cpu core is traced invidually
//  instead of each thread, which uses a fixed number of trace buffers, but
//  might result in less data available for less frequent threads. See
//  "perCpuTracing" below for more information.
//
//  Each actual intel pt trace buffer, either from "process tracing" or "thread
//  tracing", is stored in an in-memory circular buffer, which keeps the most
//  recent data.
//
//  Additional params in the input schema:
//   {
//     "iptTraceSize": <decimal integer>,
//         Size in bytes used by each individual per-thread or per-cpu trace
//         buffer. It must be a power of 2 greater than or equal to 4096 (2^12)
//         bytes.
//
//     "enableTsc": <boolean>,
//         Whether to enable TSC timestamps or not. This is supported on
//         all devices that support intel-pt. A TSC timestamp is generated along
//         with PSB (synchronization) packets, whose frequency can be configured
//         with the "psbPeriod" parameter.
//
//     "psbPeriod"?: <Optional decimal integer>,
//         This value defines the period in which PSB packets will be generated.
//         A PSB packet is a synchronization packet that contains a TSC
//         timestamp and the current absolute instruction pointer.
//
//         This parameter can only be used if
//
//             /sys/bus/event_source/devices/intel_pt/caps/psb_cyc
//
//         is 1. Otherwise, the PSB period will be defined by the processor.
//
//         If supported, valid values for this period can be found in
/
//             /sys/bus/event_source/devices/intel_pt/caps/psb_periods
//
//         which contains a hexadecimal number, whose bits represent valid
//         values e.g. if bit 2 is set, then value 2 is valid.
//
//         The psb_period value is converted to the approximate number of
//         raw trace bytes between PSB packets as:
//
//             2 ^ (value + 11)
//
//          e.g. value 3 means 16KiB between PSB packets. Defaults to
//          0 if supported.
//
//     /* process tracing only */
//     "perCpuTracing": <boolean>
//         Instead of having an individual trace buffer per thread, this option
//         triggers the collection on a per cpu core basis. This effectively
//         traces the entire activity on all cores. At decoding time, in order
//         to correctly associate a decoded instruction with a thread, the
//         context switch trace of each core is needed, as well as a record per
//         cpu indicating which thread was running on each core when tracing
//         started. These secondary traces are correlated with the intel-pt
//         trace by comparing TSC timestamps.
//
//         This option forces the capture of TSC timestamps (see "enableTsc").
//
//         Note: This option can't be used simulatenously with any other trace
//         sessions because of its system-wide nature.
//
//     /* process tracing only */
//     "processBufferSizeLimit": <decimal integer>,
//         Maximum total buffer size per process in bytes.
//         This limit applies to the sum of the sizes of all thread or cpu core
//         buffers for the current process, excluding the ones started with
//         "thread tracing".
//
//         If "perCpuTracing" is false, whenever a thread is attempted to be
//         traced due to "process tracing" and the limit would be reached, the
//         process is stopped with a "tracing" reason along with a meaningful
//         description, so that the user can retrace the process if needed.
//
//         If "perCpuTracing" is true, then starting the system-wide trace
//         session fails if all the individual per-cpu trace buffers require
//         in total more memory that the limit impossed by this parameter.
//   }
//
//  Notes:
//   - Modifying the parameters of an existing trace is not supported. The user
//     needs to stop the trace and start a new one.
//   - If "process tracing" is attempted and there are individual threads
//     already being traced with "thread tracing", these traces are left
//     unaffected and the threads not traced twice.
//   - If "thread tracing" is attempted on a thread already being traced with
//     either "thread tracing" or "process tracing", it fails.
//----------------------------------------------------------------------

Process tracing:
send packet: jLLDBTraceStart:{"type":<type>,...other params}]
read packet: OK/E<error code>;AAAAAAAAA

Thread tracing:
send packet: jLLDBTraceStart:{"type":<type>,"tids":<tids>,...other params}]
read packet: OK/E<error code>;AAAAAAAAA

//----------------------------------------------------------------------
// jLLDBTraceStop
//
// BRIEF
//  Stop tracing a process or its threads using a provided tracing technology.
//  The input and output are specified as JSON objects. In case of success, an OK
//  response is returned, or an error otherwise.
//
// PROCESS TRACE STOPPING
//  Stopping a process trace stops the active traces initiated with
//  "thread tracing".
//
// THREAD TRACE STOPPING
//  This is a best effort request, which tries to stop as many traces as
//  possible.
//
// INPUT SCHEMA
//  The schema for the input is
//
//  {
//    "type": <string>
//       Tracing technology name, e.g. intel-pt, arm-etm.
//
//    /* thread trace stopping only */
//    "tids":  [<decimal integer>]
//       Individual thread traces to stop.
//  }
//
// NOTES
//  - If "tids" is not provided, then the operation is "process trace stopping".
//
// INTEL PT
//  Stopping a specific thread trace started with "process tracing" is allowed.
//----------------------------------------------------------------------

Process trace stopping:
send packet: jLLDBTraceStop:{"type":<type>}]
read packet: OK/E<error code>;AAAAAAAAA

Thread trace stopping:
send packet: jLLDBTraceStop:{"type":<type>,"tids":<tids>}]
read packet: OK/E<error code>;AAAAAAAAA

//----------------------------------------------------------------------
// jLLDBTraceGetState
//
// BRIEF
//  Get the current state of the process and its threads being traced by
//  a given trace technology. The response is a JSON object with custom
//  information depending on the trace technology. In case of errors, an
//  error message is returned.
//
// INPUT SCHEMA
//  {
//     "type": <string>
//        Tracing technology name, e.g. intel-pt, arm-etm.
//  }
//
// OUTPUT SCHEMA
//  {
//    "tracedThreads": [{
//      "tid": <decimal integer>,
//      "binaryData": [
//        {
//          "kind": <string>,
//              Identifier for some binary data related to this thread to
//              fetch with the jLLDBTraceGetBinaryData packet.
//          "size": <decimal integer>,
//              Size in bytes of this thread data.
//        },
//      ]
//    }],
//    "processBinaryData": [
//      {
//        "kind": <string>,
//            Identifier for some binary data related to this process to
//            fetch with the jLLDBTraceGetBinaryData packet.
//        "size": <decimal integer>,
//            Size in bytes of this thread data.
//      },
//    ],
//    "cpus"?: [
//      "id": <decimal integer>,
//          Identifier for this CPU logical core.
//      "binaryData": [
//        {
//          "kind": <string>,
//              Identifier for some binary data related to this thread to
//              fetch with the jLLDBTraceGetBinaryData packet.
//          "size": <decimal integer>,
//              Size in bytes of this cpu core data.
//        },
//      ]
//    ],
//    "warnings"?: [<string>],
//        Non-fatal messages useful for troubleshooting.
//
//    ... other attributes specific to the given tracing technology
//  }
//
// NOTES
//   - "traceThreads" includes all thread traced by both "process tracing" and
//     "thread tracing".
//
// INTEL PT
//
//  If per-cpu process tracing is enabled, "tracedThreads" will contain all
//  the threads of the process without any trace buffers. Besides that, the
//  "cpus" field will also be returned with per cpu core trace buffers.
//  A side effect of per-cpu tracing is that all the threads of unrelated
//  processes will also be traced, thus polluting the tracing data.
//
//  Binary data kinds:
//    - iptTrace: trace buffer for a thread or a cpu.
//    - perfContextSwitchTrace: context switch trace for a cpu generated by
//                              perf_event_open.
//    - procfsCpuInfo: contents of the /proc/cpuinfo file.
//
//  Additional attributes:
//    tscPerfZeroConversion:
//
//    This field allows converting Intel processor's TSC values to nanoseconds.
//    It is available through the Linux perf_event API when cap_user_time and cap_user_time_zero
//    are set.
//    See the documentation of time_zero in
//    https://man7.org/linux/man-pages/man2/perf_event_open.2.html for more information about
//    the calculation and the meaning of the values in the schema below.
///
//    Schema for this field:
//
//    "tscPerfZeroConversion": {
//      "timeMult": <decimal integer>,
//      "timeShift": <decimal integer>,
//      "timeZero": <decimal integer>,
//    }
//----------------------------------------------------------------------

send packet: jLLDBTraceGetState:{"type":<type>}]
read packet: {...object}/E<error code>;AAAAAAAAA

//----------------------------------------------------------------------
// jLLDBTraceGetBinaryData
//
// BRIEF
//  Get binary data given a trace technology and a data identifier.
//  The input is specified as a JSON object and the response has the same format
//  as the "binary memory read" (aka "x") packet. In case of failures, an error
//  message is returned.
//
// SCHEMA
//  The schema for the input is
//
//  {
//   "type": <string>,
//       Tracing technology name, e.g. intel-pt, arm-etm.
//   "kind": <string>,
//       Identifier for the data.
//   "cpuId": <Optional decimal>,
//       Core id in decimal if the data belongs to a CPU core.
//   "tid"?: <Optional decimal>,
//       Tid in decimal if the data belongs to a thread.
//  }
//----------------------------------------------------------------------

send packet: jLLDBTraceGetBinaryData:{"type":<type>,"kind":<query>,"tid":<tid>,"offset":<offset>,"size":<size>}]
read packet: <binary data>/E<error code>;AAAAAAAAA

//----------------------------------------------------------------------
// "qRegisterInfo<hex-reg-id>"
//
// BRIEF
//  Discover register information from the remote GDB server.
//
// PRIORITY TO IMPLEMENT
//  High. Any target that can self describe its registers, should do so.
//  This means if new registers are ever added to a remote target, they
//  will get picked up automatically, and allows registers to change
//  depending on the actual CPU type that is used.
//
//  NB: As of summer 2015, lldb can get register information from the
//  "qXfer:features:read:target.xml" FSF gdb standard register packet
//  where the stub provides register definitions in an XML file.
//  If qXfer:features:read:target.xml is supported, qRegisterInfo does
//  not need to be implemented.
//----------------------------------------------------------------------

With LLDB, for register information, remote GDB servers can add
support for the "qRegisterInfoN" packet where "N" is a zero based
base16 register number that must start at zero and increase by one
for each register that is supported.  The response is done in typical
GDB remote fashion where a series of "KEY:VALUE;" pairs are returned.
An example for the x86_64 registers is included below:

send packet: $qRegisterInfo0#00
read packet: $name:rax;bitsize:64;offset:0;encoding:uint;format:hex;set:General Purpose Registers;gcc:0;dwarf:0;#00
send packet: $qRegisterInfo1#00
read packet: $name:rbx;bitsize:64;offset:8;encoding:uint;format:hex;set:General Purpose Registers;gcc:3;dwarf:3;#00
send packet: $qRegisterInfo2#00
read packet: $name:rcx;bitsize:64;offset:16;encoding:uint;format:hex;set:General Purpose Registers;gcc:2;dwarf:2;#00
send packet: $qRegisterInfo3#00
read packet: $name:rdx;bitsize:64;offset:24;encoding:uint;format:hex;set:General Purpose Registers;gcc:1;dwarf:1;#00
send packet: $qRegisterInfo4#00
read packet: $name:rdi;bitsize:64;offset:32;encoding:uint;format:hex;set:General Purpose Registers;gcc:5;dwarf:5;#00
send packet: $qRegisterInfo5#00
read packet: $name:rsi;bitsize:64;offset:40;encoding:uint;format:hex;set:General Purpose Registers;gcc:4;dwarf:4;#00
send packet: $qRegisterInfo6#00
read packet: $name:rbp;alt-name:fp;bitsize:64;offset:48;encoding:uint;format:hex;set:General Purpose Registers;gcc:6;dwarf:6;generic:fp;#00
send packet: $qRegisterInfo7#00
read packet: $name:rsp;alt-name:sp;bitsize:64;offset:56;encoding:uint;format:hex;set:General Purpose Registers;gcc:7;dwarf:7;generic:sp;#00
send packet: $qRegisterInfo8#00
read packet: $name:r8;bitsize:64;offset:64;encoding:uint;format:hex;set:General Purpose Registers;gcc:8;dwarf:8;#00
send packet: $qRegisterInfo9#00
read packet: $name:r9;bitsize:64;offset:72;encoding:uint;format:hex;set:General Purpose Registers;gcc:9;dwarf:9;#00
send packet: $qRegisterInfoa#00
read packet: $name:r10;bitsize:64;offset:80;encoding:uint;format:hex;set:General Purpose Registers;gcc:10;dwarf:10;#00
send packet: $qRegisterInfob#00
read packet: $name:r11;bitsize:64;offset:88;encoding:uint;format:hex;set:General Purpose Registers;gcc:11;dwarf:11;#00
send packet: $qRegisterInfoc#00
read packet: $name:r12;bitsize:64;offset:96;encoding:uint;format:hex;set:General Purpose Registers;gcc:12;dwarf:12;#00
send packet: $qRegisterInfod#00
read packet: $name:r13;bitsize:64;offset:104;encoding:uint;format:hex;set:General Purpose Registers;gcc:13;dwarf:13;#00
send packet: $qRegisterInfoe#00
read packet: $name:r14;bitsize:64;offset:112;encoding:uint;format:hex;set:General Purpose Registers;gcc:14;dwarf:14;#00
send packet: $qRegisterInfof#00
read packet: $name:r15;bitsize:64;offset:120;encoding:uint;format:hex;set:General Purpose Registers;gcc:15;dwarf:15;#00
send packet: $qRegisterInfo10#00
read packet: $name:rip;alt-name:pc;bitsize:64;offset:128;encoding:uint;format:hex;set:General Purpose Registers;gcc:16;dwarf:16;generic:pc;#00
send packet: $qRegisterInfo11#00
read packet: $name:rflags;alt-name:flags;bitsize:64;offset:136;encoding:uint;format:hex;set:General Purpose Registers;#00
send packet: $qRegisterInfo12#00
read packet: $name:cs;bitsize:64;offset:144;encoding:uint;format:hex;set:General Purpose Registers;#00
send packet: $qRegisterInfo13#00
read packet: $name:fs;bitsize:64;offset:152;encoding:uint;format:hex;set:General Purpose Registers;#00
send packet: $qRegisterInfo14#00
read packet: $name:gs;bitsize:64;offset:160;encoding:uint;format:hex;set:General Purpose Registers;#00
send packet: $qRegisterInfo15#00
read packet: $name:fctrl;bitsize:16;offset:176;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo16#00
read packet: $name:fstat;bitsize:16;offset:178;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo17#00
read packet: $name:ftag;bitsize:8;offset:180;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo18#00
read packet: $name:fop;bitsize:16;offset:182;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo19#00
read packet: $name:fioff;bitsize:32;offset:184;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo1a#00
read packet: $name:fiseg;bitsize:16;offset:188;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo1b#00
read packet: $name:fooff;bitsize:32;offset:192;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo1c#00
read packet: $name:foseg;bitsize:16;offset:196;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo1d#00
read packet: $name:mxcsr;bitsize:32;offset:200;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo1e#00
read packet: $name:mxcsrmask;bitsize:32;offset:204;encoding:uint;format:hex;set:Floating Point Registers;#00
send packet: $qRegisterInfo1f#00
read packet: $name:stmm0;bitsize:80;offset:208;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:33;dwarf:33;#00
send packet: $qRegisterInfo20#00
read packet: $name:stmm1;bitsize:80;offset:224;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:34;dwarf:34;#00
send packet: $qRegisterInfo21#00
read packet: $name:stmm2;bitsize:80;offset:240;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:35;dwarf:35;#00
send packet: $qRegisterInfo22#00
read packet: $name:stmm3;bitsize:80;offset:256;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:36;dwarf:36;#00
send packet: $qRegisterInfo23#00
read packet: $name:stmm4;bitsize:80;offset:272;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:37;dwarf:37;#00
send packet: $qRegisterInfo24#00
read packet: $name:stmm5;bitsize:80;offset:288;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:38;dwarf:38;#00
send packet: $qRegisterInfo25#00
read packet: $name:stmm6;bitsize:80;offset:304;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:39;dwarf:39;#00
send packet: $qRegisterInfo26#00
read packet: $name:stmm7;bitsize:80;offset:320;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:40;dwarf:40;#00
send packet: $qRegisterInfo27#00
read packet: $name:xmm0;bitsize:128;offset:336;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:17;dwarf:17;#00
send packet: $qRegisterInfo28#00
read packet: $name:xmm1;bitsize:128;offset:352;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:18;dwarf:18;#00
send packet: $qRegisterInfo29#00
read packet: $name:xmm2;bitsize:128;offset:368;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:19;dwarf:19;#00
send packet: $qRegisterInfo2a#00
read packet: $name:xmm3;bitsize:128;offset:384;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:20;dwarf:20;#00
send packet: $qRegisterInfo2b#00
read packet: $name:xmm4;bitsize:128;offset:400;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:21;dwarf:21;#00
send packet: $qRegisterInfo2c#00
read packet: $name:xmm5;bitsize:128;offset:416;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:22;dwarf:22;#00
send packet: $qRegisterInfo2d#00
read packet: $name:xmm6;bitsize:128;offset:432;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:23;dwarf:23;#00
send packet: $qRegisterInfo2e#00
read packet: $name:xmm7;bitsize:128;offset:448;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:24;dwarf:24;#00
send packet: $qRegisterInfo2f#00
read packet: $name:xmm8;bitsize:128;offset:464;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:25;dwarf:25;#00
send packet: $qRegisterInfo30#00
read packet: $name:xmm9;bitsize:128;offset:480;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:26;dwarf:26;#00
send packet: $qRegisterInfo31#00
read packet: $name:xmm10;bitsize:128;offset:496;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:27;dwarf:27;#00
send packet: $qRegisterInfo32#00
read packet: $name:xmm11;bitsize:128;offset:512;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:28;dwarf:28;#00
send packet: $qRegisterInfo33#00
read packet: $name:xmm12;bitsize:128;offset:528;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:29;dwarf:29;#00
send packet: $qRegisterInfo34#00
read packet: $name:xmm13;bitsize:128;offset:544;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:30;dwarf:30;#00
send packet: $qRegisterInfo35#00
read packet: $name:xmm14;bitsize:128;offset:560;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:31;dwarf:31;#00
send packet: $qRegisterInfo36#00
read packet: $name:xmm15;bitsize:128;offset:576;encoding:vector;format:vector-uint8;set:Floating Point Registers;gcc:32;dwarf:32;#00
send packet: $qRegisterInfo37#00
read packet: $name:trapno;bitsize:32;offset:696;encoding:uint;format:hex;set:Exception State Registers;#00
send packet: $qRegisterInfo38#00
read packet: $name:err;bitsize:32;offset:700;encoding:uint;format:hex;set:Exception State Registers;#00
send packet: $qRegisterInfo39#00
read packet: $name:faultvaddr;bitsize:64;offset:704;encoding:uint;format:hex;set:Exception State Registers;#00
send packet: $qRegisterInfo3a#00
read packet: $E45#00

As we see above we keep making subsequent calls to the remote server to
discover all registers by increasing the number appended to qRegisterInfo and
we get a response back that is a series of "key=value;" strings.

The offset: fields should not leave a gap anywhere in the g/G packet -- the
register values should be appended one after another.  For instance, if the
register context for a thread looks like

struct rctx {
    uint32_t gpr1;  // offset 0
    uint32_t gpr2;  // offset 4
    uint32_t gpr3;  // offset 8
    uint64_t fp1;   // offset 16
};

You may end up with a 4-byte gap between gpr3 and fp1 on architectures
that align values like this.  The correct offset: value for fp1 is 12 -
in the g/G packet fp1 will immediately follow gpr3, even though the
in-memory thread structure has an empty 4 bytes for alignment between
these two registers.

The keys and values are detailed below:

Key         Value
==========  ================================================================
name        The primary register name as a string ("rbp" for example)

alt-name    An alternate name for a register as a string ("fp" for example for
            the above "rbp")

bitsize     Size in bits of a register (32, 64, etc).  Base 10.

offset      The offset within the "g" and "G" packet of the register data for
            this register.  This is the byte offset once the data has been
            transformed into binary, not the character offset into the g/G
            packet.  Base 10.

encoding    The encoding type of the register which must be one of:

                 uint (unsigned integer)
                 sint (signed integer)
                 ieee754 (IEEE 754 float)
                 vector (vector register)

format      The preferred format for display of this register. The value must
            be one of:

                binary
                decimal
                hex
                float
                vector-sint8
                vector-uint8
                vector-sint16
                vector-uint16
                vector-sint32
                vector-uint32
                vector-float32
                vector-uint128

set         The register set name as a string that this register belongs to.

gcc         The GCC compiler registers number for this register (used for
            EH frame and other compiler information that is encoded in the
            executable files). The supplied number will be decoded like a
            string passed to strtoul() with a base of zero, so the number
            can be decimal, or hex if it is prefixed with "0x".

            NOTE: If the compiler doesn't have a register number for this
            register, this key/value pair should be omitted.

dwarf       The DWARF register number for this register that is used for this
            register in the debug information. The supplied number will be decoded
            like a string passed to strtoul() with a base of zero, so the number
            can be decimal, or hex if it is prefixed with "0x".

            NOTE: If the compiler doesn't have a register number for this
            register, this key/value pair should be omitted.

generic     If the register is a generic register that most CPUs have, classify
            it correctly so the debugger knows. Valid values are one of:
             pc  (a program counter register. for example "name=eip;" (i386),
                  "name=rip;" (x86_64), "name=r15;" (32 bit arm) would
                  include a "generic=pc;" key value pair)
             sp  (a stack pointer register. for example "name=esp;" (i386),
                  "name=rsp;" (x86_64), "name=r13;" (32 bit arm) would
                  include a "generic=sp;" key value pair)
             fp  (a frame pointer register. for example "name=ebp;" (i386),
                   "name=rbp;" (x86_64), "name=r7;" (32 bit arm with macosx
                   ABI) would include a "generic=fp;" key value pair)
             ra  (a return address register. for example "name=lr;" (32 bit ARM)
                  would include a "generic=ra;" key value pair)
             fp  (a CPU flags register. for example "name=eflags;" (i386),
                  "name=rflags;" (x86_64), "name=cpsr;" (32 bit ARM)
                  would include a "generic=flags;" key value pair)
             arg1 - arg8 (specified for registers that contain function
                      arguments when the argument fits into a register)

container-regs
            The value for this key is a comma separated list of raw hex (optional
            leading "0x") register numbers.

            This specifies that this register is contained in other concrete
            register values. For example "eax" is in the lower 32 bits of the
            "rax" register value for x86_64, so "eax" could specify that it is
            contained in "rax" by specifying the register number for "rax" (whose
            register number is 0x00)

            "container-regs:00;"

            If a register is comprised of one or more registers, like "d0" is ARM
            which is a 64 bit register, it might be made up of "s0" and "s1". If
            the register number for "s0" is 0x20, and the register number of "s1"
            is "0x21", the "container-regs" key/value pair would be:

            "container-regs:20,21;"

            This is handy for defining what GDB used to call "pseudo" registers.
            These registers are never requested by LLDB via the register read
            or write packets, the container registers will be requested on behalf
            of this register.

invalidate-regs
            The value for this key is a comma separated list of raw hex (optional
            leading "0x") register numbers.

            This specifies which register values should be invalidated when this
            register is modified. For example if modifying "eax" would cause "rax",
            "eax", "ax", "ah", and "al" to be modified where rax is 0x0, eax is 0x15,
            ax is 0x25, ah is 0x35, and al is 0x39, the "invalidate-regs" key/value
            pair would be:

            "invalidate-regs:0,15,25,35,39;"

            If there is a single register that gets invalidated, then omit the comma
            and just list a single register:

            "invalidate-regs:0;"

            This is handy when modifying a specific register can cause other
            register values to change. For example, when debugging an ARM target,
            modifying the CPSR register can cause the r8 - r14 and cpsr value to
            change depending on if the mode has changed.

//----------------------------------------------------------------------
// "qPlatform_shell"
//
// BRIEF
//  Run a command in a shell on the connected remote machine.
//
// PRIORITY TO IMPLEMENT
//  High. This command allows LLDB clients to run arbitrary shell
//  commands on a remote host.
//
/----------------------------------------------------------------------

The request consists of the command to be executed encoded in ASCII characters
converted into hex bytes.

The response to this packet consists of the letter F followed by the return code,
followed by the signal number (or 0 if no signal was delivered), and escaped bytes
of captured program output.

Below is an example communication from a client sending an "ls -la" command:

send packet: $qPlatform_shell:6c73202d6c61,00000002#ec
read packet: $F,00000000,00000000,total 4736
drwxrwxr-x 16 username groupname    4096 Aug 15 21:36 .
drwxr-xr-x 17 username groupname    4096 Aug 10 16:39 ..
-rw-rw-r--  1 username groupname   73875 Aug 12 16:46 notes.txt
drwxrwxr-x  5 username groupname    4096 Aug 15 21:36 source.cpp
-rw-r--r--  1 username groupname    2792 Aug 12 16:46 a.out
-rw-r--r--  1 username groupname    3190 Aug 12 16:46 Makefile

//----------------------------------------------------------------------
// "qPlatform_mkdir"
//
// BRIEF
//  Creates a new directory on the connected remote machine.
//
// PRIORITY TO IMPLEMENT
//  Low. This command allows LLDB clients to create new directories on
//  a remote host.
//
/----------------------------------------------------------------------

Request:
    qPlatform_mkdir:<hex-file-mode>,<ascii-hex-path>

Reply:
    F<mkdir-return-code>
        mkdir called successfully and returned with the given return code
    Exx
        An error occurred

//----------------------------------------------------------------------
// "qPlatform_chmod"
//
// BRIEF
//  Change the permissions of a file on the connected remote machine.
//
// PRIORITY TO IMPLEMENT
//  Low. This command allows LLDB clients to change the permissions of
//  a file on the remote host.
//
/----------------------------------------------------------------------

Request:
    qPlatform_chmod:<hex-file-mode>,<ascii-hex-path>

Reply:
    F<chmod-return-code>
        chmod called successfully and returned with the given return code
    Exx
        An error occurred

//----------------------------------------------------------------------
// "qHostInfo"
//
// BRIEF
//  Get information about the host we are remotely connected to.
//
// PRIORITY TO IMPLEMENT
//  High. This packet is usually very easy to implement and can help
//  LLDB select the correct plug-ins for the job based on the target
//  triple information that is supplied.
//----------------------------------------------------------------------

LLDB supports a host info call that gets all sorts of details of the system
that is being debugged:

send packet: $qHostInfo#00
read packet: $cputype:16777223;cpusubtype:3;ostype:darwin;vendor:apple;endian:little;ptrsize:8;#00

Key value pairs are one of:

cputype: is a number that is the mach-o CPU type that is being debugged (base 10)
cpusubtype: is a number that is the mach-o CPU subtype type that is being debugged (base 10)
triple: a string for the target triple (x86_64-apple-macosx) that can be used to specify arch + vendor + os in one entry
vendor: a string for the vendor (apple), not needed if "triple" is specified
ostype: a string for the OS being debugged (macosx, linux, freebsd, ios, watchos), not needed if "triple" is specified
endian: is one of "little", "big", or "pdp"
ptrsize: an unsigned number that represents how big pointers are in bytes on the debug target
hostname: the hostname of the host that is running the GDB server if available
os_build: a string for the OS build for the remote host as a string value
os_kernel: a string describing the kernel version
os_version: a version string that represents the current OS version (10.8.2)
watchpoint_exceptions_received: one of "before" or "after" to specify if a watchpoint is triggered before or after the pc when it stops
default_packet_timeout: an unsigned number that specifies the default timeout in seconds
distribution_id: optional. For linux, specifies distribution id (e.g. ubuntu, fedora, etc.)
osmajor: optional, specifies the major version number of the OS (e.g. for macOS 10.12.2, it would be 10)
osminor: optional, specifies the minor version number of the OS (e.g. for macOS 10.12.2, it would be 12)
ospatch: optional, specifies the patch level number of the OS (e.g. for macOS 10.12.2, it would be 2)
vm-page-size: optional, specifies the target system VM page size, base 10.
           Needed for the "dirty-pages:" list in the qMemoryRegionInfo
           packet, where a list of dirty pages is sent from the remote
           stub.  This page size tells lldb how large each dirty page is.
addressing_bits: optional, specifies how many bits in addresses are
		 significant for addressing, base 10.  If bits 38..0
		 in a 64-bit pointer are significant for addressing,
		 then the value is 39.  This is needed on e.g. AArch64
		 v8.3 ABIs that use pointer authentication, so lldb
		 knows which bits to clear/set to get the actual
		 addresses.

//----------------------------------------------------------------------
// "qGDBServerVersion"
//
// BRIEF
//  Get version information about this implementation of the gdb-remote
//  protocol.
//
// PRIORITY TO IMPLEMENT
//  High. This packet is usually very easy to implement and can help
//  LLDB to work around bugs in a server's implementation when they
//  are found.
//----------------------------------------------------------------------

The goal of this packet is to provide enough information about an
implementation of the gdb-remote-protocol server that lldb can
work around implementation problems that are discovered after the
version has been released/deployed.  The name and version number
should be sufficiently unique that lldb can unambiguously identify
the origin of the program (for instance, debugserver from lldb) and
the version/submission number/patch level of the program - whatever
is appropriate for your server implementation.

The packet follows the key-value pair model, semicolon separated.

send packet: $qGDBServerVersion#00
read packet: $name:debugserver;version:310.2;#00

Other clients may find other key-value pairs to be useful for identifying
a gdb stub.  Patch level, release name, build number may all be keys that
better describe your implementation's version.
Suggested key names:

  name   : the name of your remote server - "debugserver" is the lldb standard
           implementation

  version : identifies the version number of this server

  patch_level : the patch level of this server

  release_name : the name of this release, if your project uses names

  build_number : if you use a build system with increasing build numbers,
                 this may be the right key name for your server

  major_version : major version number
  minor_version : minor version number

//----------------------------------------------------------------------
// "qProcessInfo"
//
// BRIEF
//  Get information about the process we are currently debugging.
//
// PRIORITY TO IMPLEMENT
//  Medium.  On systems which can launch multiple different architecture processes,
//  the qHostInfo may not disambiguate sufficiently to know what kind of
//  process is being debugged.
//  e.g. on a 64-bit x86 Mac system both 32-bit and 64-bit user processes are possible,
//  and with Mach-O universal files, the executable file may contain both 32- and
//  64-bit slices so it may be impossible to know until you're attached to a real
//  process to know what you're working with.
//
//  All numeric fields return base-16 numbers without any "0x" prefix.
//----------------------------------------------------------------------

An i386 process:

send packet: $qProcessInfo#00
read packet: $pid:42a8;parent-pid:42bf;real-uid:ecf;real-gid:b;effective-uid:ecf;effective-gid:b;cputype:7;cpusubtype:3;ostype:macosx;vendor:apple;endian:little;ptrsize:4;#00

An x86_64 process:

send packet: $qProcessInfo#00
read packet: $pid:d22c;parent-pid:d34d;real-uid:ecf;real-gid:b;effective-uid:ecf;effective-gid:b;cputype:1000007;cpusubtype:3;ostype:macosx;vendor:apple;endian:little;ptrsize:8;#00

Key value pairs include:

pid: the process id
parent-pid: the process of the parent process (often debugserver will become the parent when attaching)
real-uid: the real user id of the process
real-gid: the real group id of the process
effective-uid: the effective user id of the process
effective-gid: the effective group id of the process
cputype: the Mach-O CPU type of the process  (base 16)
cpusubtype: the Mach-O CPU subtype of the process  (base 16)
ostype: is a string the represents the OS being debugged (darwin, linux, freebsd)
vendor: is a string that represents the vendor (apple)
endian: is one of "little", "big", or "pdp"
ptrsize: is a number that represents how big pointers are in bytes

main-binary-uuid: is the UUID of a firmware type binary that the gdb stub knows about
main-binary-address: is the load address of the firmware type binary
main-binary-slide: is the slide of the firmware type binary, if address isn't known

//----------------------------------------------------------------------
// "qShlibInfoAddr"
//
// BRIEF
//  Get an address where the dynamic linker stores information about
//  where shared libraries are loaded.
//
// PRIORITY TO IMPLEMENT
//  High if you have a dynamic loader plug-in in LLDB for your target
//  triple (see the "qHostInfo" packet) that can use this information.
//  Many times address load randomization can make it hard to detect
//  where the dynamic loader binary and data structures are located and
//  some platforms know, or can find out where this information is.
//
//  Low if you have a debug target where all object and symbol files
//  contain static load addresses.
//----------------------------------------------------------------------

LLDB and GDB both support the "qShlibInfoAddr" packet which is a hint to each
debugger as to where to find the dynamic loader information. For darwin
binaries that run in user land this is the address of the "all_image_infos"
structure in the "/usr/lib/dyld" executable, or the result of a TASK_DYLD_INFO
call. The result is returned as big endian hex bytes that are the address
value:

send packet: $qShlibInfoAddr#00
read packet: $7fff5fc40040#00



//----------------------------------------------------------------------
// "qThreadStopInfo<tid>"
//
// BRIEF
//  Get information about why a thread, whose ID is "<tid>", is stopped.
//
// PRIORITY TO IMPLEMENT
//  High if you need to support multi-threaded or multi-core debugging.
//  Many times one thread will hit a breakpoint and while the debugger
//  is in the process of suspending the other threads, other threads
//  will also hit a breakpoint. This packet allows LLDB to know why all
//  threads (live system debug) / cores (JTAG) in your program have
//  stopped and allows LLDB to display and control your program
//  correctly.
//----------------------------------------------------------------------

LLDB tries to use the "qThreadStopInfo" packet which is formatted as
"qThreadStopInfo%x" where %x is the hex thread ID. This requests information
about why a thread is stopped. The response is the same as the stop reply
packets and tells us what happened to the other threads. The standard GDB
remote packets love to think that there is only _one_ reason that _one_ thread
stops at a time. This allows us to see why all threads stopped and allows us
to implement better multi-threaded debugging support.

//----------------------------------------------------------------------
// "QThreadSuffixSupported"
//
// BRIEF
//  Try to enable thread suffix support for the 'g', 'G', 'p', and 'P'
//  packets.
//
// PRIORITY TO IMPLEMENT
//  High. Adding a thread suffix allows us to read and write registers
//  more efficiently and stops us from having to select a thread with
//  one packet and then read registers with a second packet. It also
//  makes sure that no errors can occur where the debugger thinks it
//  already has a thread selected (see the "Hg" packet from the standard
//  GDB remote protocol documentation) yet the remote GDB server actually
//  has another thread selected.
//----------------------------------------------------------------------

When reading thread registers, you currently need to set the current
thread, then read the registers. This is kind of cumbersome, so we added the
ability to query if the remote GDB server supports adding a "thread:<tid>;"
suffix to all packets that request information for a thread. To test if the
remote GDB server supports this feature:

send packet: $QThreadSuffixSupported#00
read packet: OK

If "OK" is returned, then the 'g', 'G', 'p' and 'P' packets can accept a
thread suffix. So to send a 'g' packet (read all register values):

send packet: $g;thread:<tid>;#00
read packet: ....

send packet: $G;thread:<tid>;#00
read packet: ....

send packet: $p1a;thread:<tid>;#00
read packet: ....

send packet: $P1a=1234abcd;thread:<tid>;#00
read packet: ....


otherwise, without this you would need to always send two packets:

send packet: $Hg<tid>#00
read packet: ....
send packet: $g#00
read packet: ....

We also added support for allocating and deallocating memory. We use this to
allocate memory so we can run JITed code.

//----------------------------------------------------------------------
// "_M<size>,<permissions>"
//
// BRIEF
//  Allocate memory on the remote target with the specified size and
//  permissions.
//
// PRIORITY TO IMPLEMENT
//  High if you want LLDB to be able to JIT code and run that code. JIT
//  code also needs data which is also allocated and tracked.
//
//  Low if you don't support running JIT'ed code.
//----------------------------------------------------------------------

The allocate memory packet starts with "_M<size>,<permissions>". It returns a
raw big endian address value, or "" for unimplemented, or "EXX" for an error
code. The packet is formatted as:

char packet[256];
int packet_len;
packet_len = ::snprintf (
    packet,
    sizeof(packet),
    "_M%zx,%s%s%s",
    (size_t)size,
    permissions & lldb::ePermissionsReadable ? "r" : "",
    permissions & lldb::ePermissionsWritable ? "w" : "",
    permissions & lldb::ePermissionsExecutable ? "x" : "");

You request a size and give the permissions. This packet does NOT need to be
implemented if you don't want to support running JITed code. The return value
is just the address of the newly allocated memory as raw big endian hex bytes.

//----------------------------------------------------------------------
// "_m<addr>"
//
// BRIEF
//  Deallocate memory that was previously allocated using an allocate
//  memory pack.
//
// PRIORITY TO IMPLEMENT
//  High if you want LLDB to be able to JIT code and run that code. JIT
//  code also needs data which is also allocated and tracked.
//
//  Low if you don't support running JIT'ed code.
//----------------------------------------------------------------------

The deallocate memory packet is "_m<addr>" where you pass in the address you
got back from a previous call to the allocate memory packet. It returns "OK"
if the memory was successfully deallocated, or "EXX" for an error, or "" if
not supported.

//----------------------------------------------------------------------
// "qMemoryRegionInfo:<addr>"
//
// BRIEF
//  Get information about the address range that contains "<addr>"
//
// PRIORITY TO IMPLEMENT
//  Medium. This is nice to have, but it isn't necessary. It helps LLDB
//  do stack unwinding when we branch into memory that isn't executable.
//  If we can detect that the code we are stopped in isn't executable,
//  then we can recover registers for stack frames above the current
//  frame. Otherwise we must assume we are in some JIT'ed code (not JIT
//  code that LLDB has made) and assume that no registers are available
//  in higher stack frames.
//----------------------------------------------------------------------

We added a way to get information for a memory region. The packet is:

    qMemoryRegionInfo:<addr>

Where <addr> is a big endian hex address. The response is returned in a series
of tuples like the data returned in a stop reply packet. The currently valid
tuples to return are:

    start:<start-addr>; // <start-addr> is a big endian hex address that is
                        // the start address of the range that contains <addr>

    size:<size>;    // <size> is a big endian hex byte size of the address
                    // of the range that contains <addr>

    permissions:<permissions>;  // <permissions> is a string that contains one
                                // or more of the characters from "rwx"

    name:<name>; // <name> is a hex encoded string that contains the name of
                 // the memory region mapped at the given address. In case of
                 // regions backed by a file it have to be the absolute path of
                 // the file while for anonymous regions it have to be the name
                 // associated to the region if that is available.

    flags:<flags-string>; // where <flags-string> is a space separated string
                          // of flag names. Currently the only supported flag
                          // is "mt" for AArch64 memory tagging. lldb will
                          // ignore any other flags in this field.

    type:[<type>][,<type>]; // memory types that apply to this region, e.g.
                 // "stack" for stack memory.

    error:<ascii-byte-error-string>; // where <ascii-byte-error-string> is
                                     // a hex encoded string value that
                                     // contains an error string

    dirty-pages:[<hexaddr>][,<hexaddr]; // A list of memory pages within this
                 // region that are "dirty" -- they have been modified.
                 // Page addresses are in base16.  The size of a page can
                 // be found from the qHostInfo's page-size key-value.
                 //
                 // If the stub supports identifying dirty pages within a
                 // memory region, this key should always be present for all
                 // qMemoryRegionInfo replies.  This key with no pages
                 // listed ("dirty-pages:;") indicates no dirty pages in
                 // this memory region.  The *absence* of this key means
                 // that this stub cannot determine dirty pages.

If the address requested is not in a mapped region (e.g. we've jumped through
a NULL pointer and are at 0x0) currently lldb expects to get back the size
of the unmapped region -- that is, the distance to the next valid region.
For instance, with a macOS process which has nothing mapped in the first
4GB of its address space, if we're asking about address 0x2,

  qMemoryRegionInfo:2
  start:2;size:fffffffe;

The lack of 'permissions:' indicates that none of read/write/execute are valid
for this region.

//----------------------------------------------------------------------
// "x" - Binary memory read
//
// Like the 'm' (read) and 'M' (write) packets, this is a partner to the
// 'X' (write binary data) packet, 'x'.
//
// It is called like
//
// xADDRESS,LENGTH
//
// where both ADDRESS and LENGTH are big-endian base 16 values.
//
// To test if this packet is available, send a addr/len of 0:
//
// x0,0
//
// and you will get an "OK" response.
//
// The reply will be the data requested in 8-bit binary data format.
// The standard quoting is applied to the payload -- characters
//   }  #  $  *
// will all be escaped with '}' (0x7d) character and then XOR'ed with 0x20.
//
// A typical use to read 512 bytes at 0x1000 would look like
//
// x0x1000,0x200
//
// The "0x" prefixes are optional - like most of the gdb-remote packets,
// omitting them will work fine; these numbers are always base 16.
//
// The length of the payload is not provided.  A reliable, 8-bit clean,
// transport layer is assumed.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// Detach and stay stopped:
//
// We extended the "D" packet to specify that the monitor should keep the
// target suspended on detach.  The normal behavior is to resume execution
// on detach.  We will send:
//
//  qSupportsDetachAndStayStopped:
//
// to query whether the monitor supports the extended detach, and if it does,
// when we want the monitor to detach but not resume the target, we will
// send:
//
//   D1
//
// In any case, if we want the normal detach behavior we will just send:
//
//   D
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// QSaveRegisterState
// QSaveRegisterState;thread:XXXX;
//
// BRIEF
//  The QSaveRegisterState packet tells the remote debugserver to save
//  all registers and return a non-zero unique integer ID that
//  represents these save registers. If thread suffixes are enabled the
//  second form of this packet is used, otherwise the first form is
//  used. This packet is called prior to executing an expression, so
//  the remote GDB server should do anything it needs to in order to
//  ensure the registers that are saved are correct. On macOS this
//  involves calling "thread_abort_safely(mach_port_t thread)" to
//  ensure we get the correct registers for a thread in case it is
//  currently having code run on its behalf in the kernel.
//
// RESPONSE
//  unsigned - The save_id result is a non-zero unsigned integer value
//             that can be passed back to the GDB server using a
//             QRestoreRegisterState packet to restore the registers
//             one time.
//  "EXX" - or an error code in the form of EXX where XX is a
//  hex error code.
//
// PRIORITY TO IMPLEMENT
//  Low, this is mostly a convenience packet to avoid having to send all
//  registers via a g packet. It should only be implemented if support
//  for the QRestoreRegisterState is added.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// QRestoreRegisterState:<save_id>
// QRestoreRegisterState:<save_id>;thread:XXXX;
//
// BRIEF
//  The QRestoreRegisterState packet tells the remote debugserver to
//  restore all registers using the "save_id" which is an unsigned
//  integer that was returned from a previous call to
//  QSaveRegisterState. The restoration process can only be done once
//  as the data backing the register state will be freed upon the
//  completion of the QRestoreRegisterState command.
//
//  If thread suffixes are enabled the second form of this packet is
//  used, otherwise the first form is used.
//
// RESPONSE
//  "OK" - if all registers were successfully restored
//  "EXX" - for any errors
//
// PRIORITY TO IMPLEMENT
//  Low, this is mostly a convenience packet to avoid having to send all
//  registers via a g packet. It should only be implemented if support
//  for the QSaveRegisterState is added.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// qFileLoadAddress:<file_path>
//
// BRIEF
//  Get the load address of a memory mapped file.
//  The load address is defined as the address of the first memory
//  region what contains data mapped from the specified file.
//
// RESPONSE
//  <unsigned-hex64> - Load address of the file in big endian encoding
//  "E01" - the requested file isn't loaded
//  "EXX" - for any other errors
//
// PRIORITY TO IMPLEMENT
//  Low, required if dynamic linker don't fill in the load address of
//  some object file in the rendezvous data structure.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// qModuleInfo:<module_path>;<arch triple>
//
// BRIEF
//  Get information for a module by given module path and architecture.
//
// RESPONSE
//  "(uuid|md5):...;triple:...;file_offset:...;file_size...;"
//  "EXX" - for any errors
//
// PRIORITY TO IMPLEMENT
//  Optional, required if dynamic loader cannot fetch module's information like
//  UUID directly from inferior's memory.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// jModulesInfo:[{"file":"...",triple:"..."}, ...]
//
// BRIEF
//  Get information for a list of modules by given module path and
//  architecture.
//
// RESPONSE
//  A JSON array of dictionaries containing the following keys: uuid,
//  triple, file_path, file_offset, file_size. The meaning of the fields
//  is the same as in the qModuleInfo packet. The server signals the
//  failure to retrieve the module info for a file by ommiting the
//  corresponding array entry from the response. The server may also
//  include entries the client did not ask for, if it has reason to
//  the modules will be interesting to the client.
//
// PRIORITY TO IMPLEMENT
//  Optional. If not implemented, qModuleInfo packet will be used, which
//  may be slower if the target contains a large number of modules and
//  the communication link has a non-negligible latency.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// Stop reply packet extensions
//
// BRIEF
//  This section describes some of the additional information you can
//  specify in stop reply packets that help LLDB to know more detailed
//  information about your threads.
//
// DESCRIPTION
//  Standard GDB remote stop reply packets are reply packets sent in
//  response to a packet  that made the program run. They come in the
//  following forms:
//
//  "SAA"
//  "S" means signal and "AA" is a hex signal number that describes why
//  the thread or stopped. It doesn't specify which thread, so the "T"
//  packet is recommended to use instead of the "S" packet.
//
//  "TAAkey1:value1;key2:value2;..."
//  "T" means a thread stopped due to a unix signal where "AA" is a hex
//  signal number that describes why the program stopped. This is
//  followed by a series of key/value pairs:
//      - If key is a hex number, it is a register number and value is
//        the hex value of the register in debuggee endian byte order.
//      - If key == "thread", then the value is the big endian hex
//        thread-id of the stopped thread.
//      - If key == "core", then value is a hex number of the core on
//        which the stop was detected.
//      - If key == "watch" or key == "rwatch" or key == "awatch", then
//        value is the data address in big endian hex
//      - If key == "library", then value is ignore and "qXfer:libraries:read"
//        packets should be used to detect any newly loaded shared libraries
//
//  "WAA"
//  "W" means the process exited and "AA" is the exit status.
//
//  "XAA"
//  "X" means the process exited and "AA" is signal that caused the program
//  to exit.
//
//  "O<ascii-hex-string>"
//  "O" means STDOUT has data that was written to its console and is
//  being delivered to the debugger. This packet happens asynchronously
//  and the debugger is expected to continue to wait for another stop reply
//  packet.
//
// LLDB EXTENSIONS
//
//  We have extended the "T" packet to be able to also understand the
//  following keys and values:
//
//  KEY           VALUE     DESCRIPTION
//  ===========   ========  ================================================
//  "metype"      unsigned  mach exception type (the value of the EXC_XXX enumerations)
//                          as an unsigned integer. For targets with mach
//                          kernels only.
//
//  "mecount"     unsigned  mach exception data count as an unsigned integer
//                          For targets with mach kernels only.
//
//  "medata"      unsigned  There should be "mecount" of these and it is the data
//                          that goes along with a mach exception (as an unsigned
//                          integer). For targets with mach kernels only.
//
//  "name"        string    The name of the thread as a plain string. The string
//                          must not contain an special packet characters or
//                          contain a ':' or a ';'. Use "hexname" if the thread
//                          name has special characters.
//
//  "hexname"     ascii-hex An ASCII hex string that contains the name of the thread
//
//  "qaddr"       hex       Big endian hex value that contains the libdispatch
//                          queue address for the queue of the thread.
//
//  "reason"      enum      The enumeration must be one of:
//                          "trace" the program stopped after a single instruction
//                              was executed on a core. Usually done when single
//                              stepping past a breakpoint
//                          "breakpoint" a breakpoint set using a 'z' packet was hit.
//                          "trap" stopped due to user interruption
//                          "signal" stopped due to an actual unix signal, not
//                              just the debugger using a unix signal to keep
//                              the GDB remote client happy.
//                          "watchpoint". Should be used in conjunction with
//                              the "watch"/"rwatch"/"awatch" key value pairs.
//                          "exception" an exception stop reason. Use with
//                              the "description" key/value pair to describe the
//                              exceptional event the user should see as the stop
//                              reason.
//  "description" ascii-hex An ASCII hex string that contains a more descriptive
//                          reason that the thread stopped. This is only needed
//                          if none of the key/value pairs are enough to
//                          describe why something stopped.
//
//  "threads"     comma-sep-base16  A list of thread ids for all threads (including
//                                  the thread that we're reporting as stopped) that
//                                  are live in the process right now.  lldb may
//                                  request that this be included in the T packet via
//                                  the QListThreadsInStopReply packet earlier in
//                                  the debug session.
//
//                                  Example:
//                                  threads:63387,633b2,63424,63462,63486;
//
//  "thread-pcs"  comma-sep-base16  A list of pc values for all threads that currently
//                                  exist in the process, including the thread that
//                                  this T packet is reporting as stopped.
//                                  This key-value pair will only be emitted when the
//                                  "threads" key is already included in the T packet.
//                                  The pc values correspond to the threads reported
//                                  in the "threads" list.  The number of pcs in the
//                                  "thread-pcs" list will be the same as the number of
//                                  threads in the "threads" list.
//                                  lldb may request that this be included in the T
//                                  packet via the QListThreadsInStopReply packet
//                                  earlier in the debug session.
//
//                                  Example:
//                                  thread-pcs:dec14,2cf872b0,2cf8681c,2d02d68c,2cf716a8;
//
// BEST PRACTICES:
//  Since register values can be supplied with this packet, it is often useful
//  to return the PC, SP, FP, LR (if any), and FLAGS registers so that separate
//  packets don't need to be sent to read each of these registers from each
//  thread.
//
//  If a thread is stopped for no reason (like just because another thread
//  stopped, or because when one core stops all cores should stop), use a
//  "T" packet with "00" as the signal number and fill in as many key values
//  and registers as possible.
//
//  LLDB likes to know why a thread stopped since many thread control
//  operations like stepping over a source line, actually are implemented
//  by running the process multiple times. If a breakpoint is hit while
//  trying to step over a source line and LLDB finds out that a breakpoint
//  is hit in the "reason", we will know to stop trying to do the step
//  over because something happened that should stop us from trying to
//  do the step. If we are at a breakpoint and we disable the breakpoint
//  at the current PC and do an instruction single step, knowing that
//  we stopped due to a "trace" helps us know that we can continue
//  running versus stopping due to a "breakpoint" (if we have two
//  breakpoint instruction on consecutive instructions). So the more info
//  we can get about the reason a thread stops, the better job LLDB can
//  do when controlling your process. A typical GDB server behavior is
//  to send a SIGTRAP for breakpoints _and_ also when instruction single
//  stepping, in this case the debugger doesn't really know why we
//  stopped and it can make it hard for the debugger to control your
//  program correctly. What if a real SIGTRAP was delivered to a thread
//  while we were trying to single step? We wouldn't know the difference
//  with a standard GDB remote server and we could do the wrong thing.
//
// PRIORITY TO IMPLEMENT
//  High. Having the extra information in your stop reply packets makes
//  your debug session more reliable and informative.
//----------------------------------------------------------------------


//----------------------------------------------------------------------
// PLATFORM EXTENSION - for use as a GDB remote platform
//----------------------------------------------------------------------
// "qfProcessInfo"
// "qsProcessInfo"
//
// BRIEF
//  Get the first process info (qfProcessInfo) or subsequent process
//  info (qsProcessInfo) for one or more processes on the remote
//  platform. The first call gets the first match and subsequent calls
//  to qsProcessInfo gets the subsequent matches. Return an error EXX,
//  where XX are two hex digits, when no more matches are available.
//
// PRIORITY TO IMPLEMENT
//  Required. The qfProcessInfo packet can be followed by a ':' and
//  some key value pairs. The key value pairs in the command are:
//
//  KEY           VALUE     DESCRIPTION
//  ===========   ========  ================================================
//  "name"        ascii-hex An ASCII hex string that contains the name of
//                          the process that will be matched.
//  "name_match"  enum      One of: "equals", "starts_with", "ends_with",
//                          "contains" or "regex"
//  "pid"         integer   A string value containing the decimal process ID
//  "parent_pid"  integer   A string value containing the decimal parent
//                          process ID
//  "uid"         integer   A string value containing the decimal user ID
//  "gid"         integer   A string value containing the decimal group ID
//  "euid"        integer   A string value containing the decimal effective user ID
//  "egid"        integer   A string value containing the decimal effective group ID
//  "all_users"   bool      A boolean value that specifies if processes should
//                          be listed for all users, not just the user that the
//                          platform is running as
//  "triple"      string    An ASCII triple string ("x86_64",
//                          "x86_64-apple-macosx", "armv7-apple-ios")
//  "args"        string    A string value containing the process arguments
//                          separated by the character '-', where each argument is
//                          hex-encoded. It includes argv[0].
//
// The response consists of key/value pairs where the key is separated from the
// values with colons and each pair is terminated with a semi colon. For a list
// of the key/value pairs in the response see the "qProcessInfoPID" packet
// documentation.
//
// Sample packet/response:
// send packet: $qfProcessInfo#00
// read packet: $pid:60001;ppid:59948;uid:7746;gid:11;euid:7746;egid:11;name:6c6c6462;triple:x86_64-apple-macosx;#00
// send packet: $qsProcessInfo#00
// read packet: $pid:59992;ppid:192;uid:7746;gid:11;euid:7746;egid:11;name:6d64776f726b6572;triple:x86_64-apple-macosx;#00
// send packet: $qsProcessInfo#00
// read packet: $E04#00
//----------------------------------------------------------------------


//----------------------------------------------------------------------
// PLATFORM EXTENSION - for use as a GDB remote platform
//----------------------------------------------------------------------
// "qLaunchGDBServer"
//
// BRIEF
//  Have the remote platform launch a GDB server.
//
// PRIORITY TO IMPLEMENT
//  Required. The qLaunchGDBServer packet must be followed by a ':' and
//  some key value pairs. The key value pairs in the command are:
//
//  KEY           VALUE     DESCRIPTION
//  ===========   ========  ================================================
//  "port"        integer   A string value containing the decimal port ID or
//                          zero if the port should be bound and returned
//
//  "host"        integer   The host that connections should be limited to
//                          when the GDB server is connected to.
//
// The response consists of key/value pairs where the key is separated from the
// values with colons and each pair is terminated with a semi colon.
//
// Sample packet/response:
// send packet: $qLaunchGDBServer:port:0;host:lldb.apple.com;#00
// read packet: $pid:60025;port:50776;#00
//
// The "pid" key/value pair is only specified if the remote platform launched
// a separate process for the GDB remote server and can be omitted if no
// process was separately launched.
//
// The "port" key/value pair in the response lets clients know what port number
// to attach to in case zero was specified as the "port" in the sent command.
//----------------------------------------------------------------------


//----------------------------------------------------------------------
// PLATFORM EXTENSION - for use as a GDB remote platform
//----------------------------------------------------------------------
// "qProcessInfoPID:PID"
//
// BRIEF
//  Have the remote platform get detailed information on a process by
//  ID. PID is specified as a decimal integer.
//
// PRIORITY TO IMPLEMENT
//  Optional.
//
// The response consists of key/value pairs where the key is separated from the
// values with colons and each pair is terminated with a semi colon.
//
// The key value pairs in the response are:
//
//  KEY           VALUE     DESCRIPTION
//  ===========   ========  ================================================
//  "pid"         integer   Process ID as a decimal integer string
//  "ppid"        integer   Parent process ID as a decimal integer string
//  "uid"         integer   A string value containing the decimal user ID
//  "gid"         integer   A string value containing the decimal group ID
//  "euid"        integer   A string value containing the decimal effective user ID
//  "egid"        integer   A string value containing the decimal effective group ID
//  "name"        ascii-hex An ASCII hex string that contains the name of the process
//  "triple"      string    A target triple ("x86_64-apple-macosx", "armv7-apple-ios")
//
// Sample packet/response:
// send packet: $qProcessInfoPID:60050#00
// read packet: $pid:60050;ppid:59948;uid:7746;gid:11;euid:7746;egid:11;name:6c6c6462;triple:x86_64-apple-macosx;#00
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "vAttachName"
//
// BRIEF
//  Same as vAttach, except instead of a "pid" you send a process name.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed for "process attach -n".  If the packet isn't supported
//  then "process attach -n" will fail gracefully.  So you need only to support
//  it if attaching to a process by name makes sense for your environment.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "vAttachWait"
//
// BRIEF
//  Same as vAttachName, except that the stub should wait for the next instance
//  of a process by that name to be launched and attach to that.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed to support "process attach -w -n" which will fail
//  gracefully if the packet is not supported.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "qAttachOrWaitSupported"
//
// BRIEF
//  This is a binary "is it supported" query.  Return OK if you support
//  vAttachOrWait
//
// PRIORITY TO IMPLEMENT
//  Low. This is required if you support vAttachOrWait, otherwise no support
//  is needed since the standard "I don't recognize this packet" response
//  will do the right thing.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "vAttachOrWait"
//
// BRIEF
//  Same as vAttachWait, except that the stub will attach to a process
//  by name if it exists, and if it does not, it will wait for a process
//  of that name to appear and attach to it.
//
// PRIORITY TO IMPLEMENT
//  Low. Only needed to implement "process attach -w -i false -n".  If
//  you don't implement it but do implement -n AND lldb can somehow get
//  a process list from your device, it will fall back on scanning the
//  process list, and sending vAttach or vAttachWait depending on
//  whether the requested process exists already.  This is racy,
//  however, so if you want to support this behavior it is better to
//  support this packet.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "jThreadExtendedInfo"
//
// BRIEF
//  This packet, which takes its arguments as JSON and sends its reply as
//  JSON, allows the gdb remote stub to provide additional information
//  about a given thread.
//
// PRIORITY TO IMPLEMENT
//  Low.  This packet is only needed if the gdb remote stub wants to
//  provide interesting additional information about a thread for the
//  user.
//
// This packet takes its arguments in JSON form ( http://www.json.org ).
// At a minimum, a thread must be specified, for example:
//
//  jThreadExtendedInfo:{"thread":612910}
//
// Because this is a JSON string, the thread number is provided in base10.
// Additional key-value pairs may be provided by lldb to the gdb remote
// stub.  For instance, on some versions of macOS, lldb can read offset
// information out of the system libraries.  Using those offsets, debugserver
// is able to find the Thread Specific Address (TSD) for a thread and include
// that in the return information.  So lldb will send these additional fields
// like so:
//
//   jThreadExtendedInfo:{"plo_pthread_tsd_base_address_offset":0,"plo_pthread_tsd_base_offset":224,"plo_pthread_tsd_entry_size":8,"thread":612910}
//
// There are no requirements for what is included in the response.  A simple
// reply on a OS X Yosemite / iOS 8 may include the pthread_t value, the
// Thread Specific Data (TSD) address, the dispatch_queue_t value if the thread
// is associated with a GCD queue, and the requested Quality of Service (QoS)
// information about that thread.  For instance, a reply may look like:
//
//  {"tsd_address":4371349728,"requested_qos":{"enum_value":33,"constant_name":"QOS_CLASS_USER_INTERACTIVE","printable_name":"User Interactive"},"pthread_t":4371349504,"dispatch_queue_t":140735087127872}
//
// tsd_address, pthread_t, and dispatch_queue_t are all simple key-value pairs.
// The JSON standard requires that numbers be expressed in base 10 - so all of
// these are.  requested_qos is a dictionary with three key-value pairs in it -
// so the UI layer may choose the form most appropriate for displaying to the user.
//
// Sending JSON over gdb-remote protocol introduces some problems.  We may be
// sending strings with arbitrary contents in them, including the '#', '$', and '*'
// characters that have special meaning in gdb-remote protocol and cannot occur
// in the middle of the string.  The standard solution for this would be to require
// ascii-hex encoding of all strings, or ascii-hex encode the entire JSON payload.
//
// Instead, the binary escaping convention is used for JSON data.  This convention
// (e.g. used for the X packet) says that if '#', '$', '*', or '}' are to occur in
// the payload, the character '}' (0x7d) is emitted, then the metacharacter is emitted
// xor'ed by 0x20.  The '}' character occurs in every JSON payload at least once, and
// '}' ^ 0x20 happens to be ']' so the raw packet characters for a request will look
// like
//
//  jThreadExtendedInfo:{"thread":612910}]
//
// on the wire.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "QEnableCompression"
//
// BRIEF
//  This packet enables compression of the packets that the debug stub sends to lldb.
//  If the debug stub can support compression, it indictes this in the reply of the
//  "qSupported" packet.  e.g.
//   LLDB SENDS:    qSupported:xmlRegisters=i386,arm,mips
//   STUB REPLIES:  qXfer:features:read+;SupportedCompressions=lzfse,zlib-deflate,lz4,lzma;DefaultCompressionMinSize=384
//
//  If lldb knows how to use any of these compression algorithms, it can ask that this
//  compression mode be enabled.  It may optionally change the minimum packet size
//  where compression is used.  Typically small packets do not benefit from compression,
//  as well as compression headers -- compression is most beneficial with larger packets.
//
//  QEnableCompression:type:zlib-deflate;
//  or
//  QEnableCompression:type:zlib-deflate;minsize:512;
//
//  The debug stub should reply with an uncompressed "OK" packet to indicate that the
//  request was accepted.  All further packets the stub sends will use this compression.
//
//  Packets are compressed as the last step before they are sent from the stub, and
//  decompressed as the first step after they are received.  The packet format in compressed
//  mode becomes one of two:
//
//   $N<uncompressed payload>#00
//
//   $C<size of uncompressed payload in base10>:<compressed payload>#00
//
//  Where "#00" is the actual checksum value if noack mode is not enabled.  The checksum
//  value is for the "N<uncompressed payload>" or
//  "C<size of uncompressed payload in base10>:<compressed payload>" bytes in the packet.
//
//  The size of the uncompressed payload in base10 is provided because it will simplify
//  decompression if the final buffer size needed is known ahead of time.
//
//  Compression on low-latency connections is unlikely to be an improvement.  Particularly
//  when the debug stub and lldb are running on the same host.  It should only be used
//  for slow connections, and likely only for larger packets.
//
//  Example compression algorithsm that may be used include
//
//    zlib-deflate
//       The raw DEFLATE format as described in IETF RFC 1951.  With the ZLIB library, you
//       can compress to this format with an initialization like
//           deflateInit2 (&stream, 5, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY)
//       and you can decompress with an initialization like
//           inflateInit2 (&stream, -15)
//
//    lz4
//       https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
//       https://github.com/Cyan4973/lz4
//       The libcompression APIs on darwin systems call this COMPRESSION_LZ4_RAW.
//
//    lzfse
//       Compression algorithm added in macOS 10.11, with open source C reference
//       implementation on github.
//       https://en.wikipedia.org/wiki/LZFSE
//       https://github.com/lzfse/lzfse
//
//    lzma
//       libcompression implements "LZMA level 6", the default compression for the
//       open source LZMA implementation.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "jGetLoadedDynamicLibrariesInfos"
//
// BRIEF
//  This packet asks the remote debug stub to send the details about libraries
//  being added/removed from the process as a performance optimization.
//
//  There are three ways this packet can be used.  All three return a dictionary of
//  binary images formatted the same way.
//
//  On OS X 10.11, iOS 9, tvOS 9, watchOS 2 and earlier, the packet is used like
//       jGetLoadedDynamicLibrariesInfos:{"image_count":1,"image_list_address":140734800075128}
//  where the image_list_address is an array of {void* load_addr, void* mod_date, void* pathname}
//  in the inferior process memory (and image_count is the number of elements in this array).
//  lldb is using information from the dyld_all_image_infos structure to make these requests to
//  debugserver.  This use is not supported on macOS 10.12, iOS 10, tvOS 10, watchOS 3 or newer.
//
//  On macOS 10.12, iOS 10, tvOS 10, watchOS 3 and newer, there are two calls.  One requests information
//  on all shared libraries:
//       jGetLoadedDynamicLibrariesInfos:{"fetch_all_solibs":true}
//  And the second requests information about a list of shared libraries, given their load addresses:
//       jGetLoadedDynamicLibrariesInfos:{"solib_addresses":[8382824135,3258302053,830202858503]}
//
//  The second call is both a performance optimization (instead of having lldb read the mach-o header/load commands
//  out of memory with generic read packets) but also adds additional information in the form of the
//  filename of the shared libraries (which is not available in the mach-o header/load commands.)
//
//  An example using the OS X 10.11 style call:
//
//  LLDB SENDS: jGetLoadedDynamicLibrariesInfos:{"image_count":1,"image_list_address":140734800075128}
//  STUB REPLIES: ${"images":[{"load_address":4294967296,"mod_date":0,"pathname":"/tmp/a.out","uuid":"02CF262C-ED6F-3965-9E14-63538B465CFF","mach_header":{"magic":4277009103,"cputype":16777223,"cpusubtype":18446744071562067971,"filetype":2},"segments":{"name":"__PAGEZERO","vmaddr":0,"vmsize":4294967296,"fileoff":0,"filesize":0,"maxprot":0},{"name":"__TEXT","vmaddr":4294967296,"vmsize":4096,"fileoff":0,"filesize":4096,"maxprot":7},{"name":"__LINKEDIT","vmaddr":4294971392,"vmsize":4096,"fileoff":4096,"filesize":152,"maxprot":7}}]}#00
//
//  Or pretty-printed,
//
//  STUB REPLIES: ${"images":
//                  [
//                      {"load_address":4294967296,
//                       "mod_date":0,
//                       "pathname":"/tmp/a.out",
//                       "uuid":"02CF262C-ED6F-3965-9E14-63538B465CFF",
//                       "mach_header":
//                          {"magic":4277009103,
//                           "cputype":16777223,
//                           "cpusubtype":18446744071562067971,
//                           "filetype":2
//                           },
//                       "segments":
//                        [
//                          {"name":"__PAGEZERO",
//                           "vmaddr":0,
//                           "vmsize":4294967296,
//                           "fileoff":0,
//                           "filesize":0,
//                           "maxprot":0
//                          },
//                          {"name":"__TEXT",
//                           "vmaddr":4294967296,
//                           "vmsize":4096,
//                           "fileoff":0,
//                           "filesize":4096,
//                           "maxprot":7
//                          },
//                          {"name":"__LINKEDIT",
//                           "vmaddr":4294971392,
//                           "vmsize":4096,
//                           "fileoff":4096,
//                           "filesize":152,
//                           "maxprot":7
//                          }
//                        ]
//                      }
//                  ]
//              }
//
//
// This is similar to the qXfer:libraries:read packet, and it could
// be argued that it should be merged into that packet.  A separate
// packet was created primarily because lldb needs to specify the
// number of images to be read and the address from which the initial
// information is read.  Also the XML DTD would need to be extended
// quite a bit to provide all the information that the DynamicLoaderMacOSX
// would need to work correctly on this platform.
//
// PRIORITY TO IMPLEMENT
//  On OS X 10.11, iOS 9, tvOS 9, watchOS 2 and older: Low.  If this packet is absent,
//  lldb will read the Mach-O headers/load commands out of memory.
//  On macOS 10.12, iOS 10, tvOS 10, watchOS 3 and newer: High.  If this packet is absent,
//  lldb will not know anything about shared libraries in the inferior, or where the main
//  executable loaded.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "jThreadsInfo"
//
// BRIEF
//  Ask for the server for thread stop information of all threads.
//
// PRIORITY TO IMPLEMENT
//  Low. This is a performance optimization, which speeds up debugging by avoiding
//  multiple round-trips for retrieving thread information. The information from this
//  packet can be retrieved using a combination of qThreadStopInfo and m packets.
//----------------------------------------------------------------------

The data in this packet is very similar to the stop reply packets, but is packaged in
JSON and uses JSON arrays where applicable. The JSON output looks like:
    [
      { "tid":1580681,
        "metype":6,
        "medata":[2,0],
        "reason":"exception",
        "qaddr":140735118423168,
        "registers": {
          "0":"8000000000000000",
          "1":"0000000000000000",
          "2":"20fabf5fff7f0000",
          "3":"e8f8bf5fff7f0000",
          "4":"0100000000000000",
          "5":"d8f8bf5fff7f0000",
          "6":"b0f8bf5fff7f0000",
          "7":"20f4bf5fff7f0000",
          "8":"8000000000000000",
          "9":"61a8db78a61500db",
          "10":"3200000000000000",
          "11":"4602000000000000",
          "12":"0000000000000000",
          "13":"0000000000000000",
          "14":"0000000000000000",
          "15":"0000000000000000",
          "16":"960b000001000000",
          "17":"0202000000000000",
          "18":"2b00000000000000",
          "19":"0000000000000000",
          "20":"0000000000000000"
        },
        "memory":[
          {"address":140734799804592,"bytes":"c8f8bf5fff7f0000c9a59e8cff7f0000"},
          {"address":140734799804616,"bytes":"00000000000000000100000000000000"}
        ]
      }
    ]

It contains an array of dictionaries with all of the key value pairs that are
normally in the stop reply packet, including the expedited registers. The registers are
passed as hex-encoded JSON string in debuggee-endian byte order. Note that the register
numbers are decimal numbers, unlike the stop-reply packet, where they are written in
hex. The packet also contains expedited memory in the "memory" key.  This allows the
server to expedite memory that the client is likely to use (e.g., areas around the
stack pointer, which are needed for computing backtraces) and it reduces the packet
count.

On macOS with debugserver, we expedite the frame pointer backchain for a thread
(up to 256 entries) by reading 2 pointers worth of bytes at the frame pointer (for
the previous FP and PC), and follow the backchain. Most backtraces on macOS and
iOS now don't require us to read any memory!

//----------------------------------------------------------------------
// "jGetSharedCacheInfo"
//
// BRIEF
//  This packet asks the remote debug stub to send the details about the inferior's
//  shared cache. The shared cache is a collection of common libraries/frameworks that
//  are mapped into every process at the same address on Darwin systems, and can be
//  identified by a load address and UUID.
//
//
//  LLDB SENDS: jGetSharedCacheInfo:{}
//  STUB REPLIES: ${"shared_cache_base_address":140735683125248,"shared_cache_uuid":"DDB8D70C-C9A2-3561-B2C8-BE48A4F33F96","no_shared_cache":false,"shared_cache_private_cache":false]}#00
//
// PRIORITY TO IMPLEMENT
//  Low.  When both lldb and the inferior process are running on the same computer, and lldb
//  and the inferior process have the same shared cache, lldb may (as an optimization) read
//  the shared cache out of its own memory instead of using gdb-remote read packets to read
//  them from the inferior process.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
// "qQueryGDBServer"
//
// BRIEF
//  Ask the platform for the list of gdbservers we have to connect
//
// PRIORITY TO IMPLEMENT
//  Low. The packet is required to support connecting to gdbserver started
//  by the platform instance automatically.
//----------------------------------------------------------------------

If the remote platform automatically started one or more gdbserver instance (without
lldb asking it) then it have to return the list of port number or socket name for
each of them what can be used by lldb to connect to those instances.

The data in this packet is a JSON array of JSON objects with the following keys:
"port":        <the port number to connect>        (optional)
"socket_name": <the name of the socket to connect> (optional)

Example packet:
[
    { "port": 1234 },
    { "port": 5432 },
    { "socket_name": "foo" }
]