aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/sqrtf128.cpp
blob: 3aa7db8362734de52891b4d14a5c2d5d69dc481a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//===-- Implementation of sqrtf128 function -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/sqrtf128.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h"
#include "src/__support/uint128.h"

// Compute sqrtf128 with correct rounding for all rounding modes using integer
// arithmetic by Alexei Sibidanov (sibid@uvic.ca):
//   https://github.com/sibidanov/llvm-project/tree/as_sqrt_v2
//   https://github.com/sibidanov/llvm-project/tree/as_sqrt_v3
// TODO: Update the reference once Alexei's implementation is in the CORE-MATH
// project. https://github.com/llvm/llvm-project/issues/126794

// Let the input be expressed as x = 2^e * m_x,
// - Step 1: Range reduction
//   Let x_reduced = 2^(e % 2) * m_x,
//   Then sqrt(x) = 2^(e / 2) * sqrt(x_reduced), with
//     1 <= x_reduced < 4.
// - Step 2: Polynomial approximation
//   Approximate 1/sqrt(x_reduced) using polynomial approximation with the
//   result errors bounded by:
//     |r0 - 1/sqrt(x_reduced)| < 2^-32.
//   The computations are done in uint64_t.
// - Step 3: First Newton iteration
//   Let the scaled error defined by:
//     h0 = r0^2 * x_reduced - 1.
//   Then we compute the first Newton iteration:
//     r1 = r0 - r0 * h0 / 2.
//   The result is then bounded by:
//     |r1 - 1 / sqrt(x_reduced)| < 2^-62.
// - Step 4: Second Newton iteration
//   We calculate the scaled error from Step 3:
//     h1 = r1^2 * x_reduced - 1.
//   Then the second Newton iteration is computed by:
//     r2 = x_reduced * (r1 - r1 * h0 / 2)
//        ~ x_reduced * (1/sqrt(x_reduced)) = sqrt(x_reduced)
// - Step 5: Perform rounding test and correction if needed.
//     Rounding correction is done by computing the exact rounding errors:
//       x_reduced - r2^2.

namespace LIBC_NAMESPACE_DECL {

using FPBits = fputil::FPBits<float128>;

namespace {

template <typename T, typename U = T> static inline constexpr T prod_hi(T, U);

// Get high part of integer multiplications.
// Use template to prevent implicit conversion.
template <>
inline constexpr uint64_t prod_hi<uint64_t>(uint64_t x, uint64_t y) {
  return static_cast<uint64_t>(
      (static_cast<UInt128>(x) * static_cast<UInt128>(y)) >> 64);
}

// Get high part of unsigned 128x64 bit multiplication.
template <>
inline constexpr UInt128 prod_hi<UInt128, uint64_t>(UInt128 x, uint64_t y) {
  uint64_t x_lo = static_cast<uint64_t>(x);
  uint64_t x_hi = static_cast<uint64_t>(x >> 64);
  UInt128 xyl = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y);
  UInt128 xyh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y);
  return xyh + (xyl >> 64);
}

// Get high part of signed 64x64 bit multiplication.
template <> inline constexpr int64_t prod_hi<int64_t>(int64_t x, int64_t y) {
  return static_cast<int64_t>(
      (static_cast<Int128>(x) * static_cast<Int128>(y)) >> 64);
}

// Get high 128-bit part of unsigned 128x128 bit multiplication.
template <> inline constexpr UInt128 prod_hi<UInt128>(UInt128 x, UInt128 y) {
  uint64_t x_lo = static_cast<uint64_t>(x);
  uint64_t x_hi = static_cast<uint64_t>(x >> 64);
  uint64_t y_lo = static_cast<uint64_t>(y);
  uint64_t y_hi = static_cast<uint64_t>(y >> 64);

  UInt128 xh_yh = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_hi);
  UInt128 xh_yl = static_cast<UInt128>(x_hi) * static_cast<UInt128>(y_lo);
  UInt128 xl_yh = static_cast<UInt128>(x_lo) * static_cast<UInt128>(y_hi);

  xh_yh += xh_yl >> 64;

  return xh_yh + (xl_yh >> 64);
}

// Get high 128-bit part of mixed sign 128x128 bit multiplication.
template <>
inline constexpr Int128 prod_hi<Int128, UInt128>(Int128 x, UInt128 y) {
  UInt128 mask = static_cast<UInt128>(x >> 127);
  UInt128 negative_part = y & mask;
  UInt128 prod = prod_hi(static_cast<UInt128>(x), y);
  return static_cast<Int128>(prod - negative_part);
}

// Newton-Raphson first order step to improve accuracy of the result.
// For the initial approximation r0 ~ 1/sqrt(x), let
//   h = r0^2 * x - 1
// be its scaled error.  Then the first-order Newton-Raphson iteration is:
//   r1 = r0 - r0 * h / 2
// which has error bounded by:
//   |r1 - 1/sqrt(x)| < h^2 / 2.
LIBC_INLINE uint64_t rsqrt_newton_raphson(uint64_t m, uint64_t r) {
  uint64_t r2 = prod_hi(r, r);
  // h = r0^2*x - 1.
  int64_t h = static_cast<int64_t>(prod_hi(m, r2) + r2);
  // hr = r * h / 2
  int64_t hr = prod_hi(h, static_cast<int64_t>(r >> 1));
  return r - hr;
}

#ifdef LIBC_MATH_HAS_SMALL_TABLES
// Degree-12 minimax polynomials for 1/sqrt(x) on [1, 2].
constexpr uint32_t RSQRT_COEFFS[12] = {
    0xb5947a4a, 0x2d651e32, 0x9ad50532, 0x2d28d093, 0x0d8be653, 0x04239014,
    0x01492449, 0x0066ff7d, 0x001e74a1, 0x000984cc, 0x00049abc, 0x00018340,
};

LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
  int64_t x = static_cast<uint64_t>(m) ^ (uint64_t(1) << 63);
  int64_t x_26 = x >> 2;
  int64_t z = x >> 31;

  if (LIBC_UNLIKELY(z <= -4294967296))
    return ~(m >> 1);

  uint64_t x2 = static_cast<uint64_t>(z) * static_cast<uint64_t>(z);
  uint64_t x2_26 = x2 >> 5;
  x2 >>= 32;
  // Calculate the odd part of the polynomial using Horner's method.
  uint64_t c0 = RSQRT_COEFFS[8] + ((x2 * RSQRT_COEFFS[10]) >> 32);
  uint64_t c1 = RSQRT_COEFFS[6] + ((x2 * c0) >> 32);
  uint64_t c2 = RSQRT_COEFFS[4] + ((x2 * c1) >> 32);
  uint64_t c3 = RSQRT_COEFFS[2] + ((x2 * c2) >> 32);
  uint64_t c4 = RSQRT_COEFFS[0] + ((x2 * c3) >> 32);
  uint64_t odd =
      static_cast<uint64_t>((x >> 34) * static_cast<int64_t>(c4 >> 3)) + x_26;
  // Calculate the even part of the polynomial using Horner's method.
  uint64_t d0 = RSQRT_COEFFS[9] + ((x2 * RSQRT_COEFFS[11]) >> 32);
  uint64_t d1 = RSQRT_COEFFS[7] + ((x2 * d0) >> 32);
  uint64_t d2 = RSQRT_COEFFS[5] + ((x2 * d1) >> 32);
  uint64_t d3 = RSQRT_COEFFS[3] + ((x2 * d2) >> 32);
  uint64_t d4 = RSQRT_COEFFS[1] + ((x2 * d3) >> 32);
  uint64_t even = 0xd105eb806655d608ul + ((x2 * d4) >> 6) + x2_26;

  uint64_t r = even - odd; // error < 1.5e-10
  // Newton-Raphson first order step to improve accuracy of the result to almost
  // 64 bits.
  return rsqrt_newton_raphson(m, r);
}

#else
// Cubic minimax polynomials for 1/sqrt(x) on [1 + k/64, 1 + (k + 1)/64]
// for k = 0..63.
constexpr uint32_t RSQRT_COEFFS[64][4] = {
    {0xffffffff, 0xfffff780, 0xbff55815, 0x9bb5b6e7},
    {0xfc0bd889, 0xfa1d6e7d, 0xb8a95a89, 0x938bf8f0},
    {0xf82ec882, 0xf473bea9, 0xb1bf4705, 0x8bed0079},
    {0xf467f280, 0xeefff2a1, 0xab309d4a, 0x84cdb431},
    {0xf0b6848c, 0xe9bf46f4, 0xa4f76232, 0x7e24037b},
    {0xed19b75e, 0xe4af2628, 0x9f0e1340, 0x77e6ca62},
    {0xe990cdad, 0xdfcd2521, 0x996f9b96, 0x720db8df},
    {0xe61b138e, 0xdb16ffde, 0x94174a00, 0x6c913cff},
    {0xe2b7dddf, 0xd68a967b, 0x8f00c812, 0x676a6f92},
    {0xdf6689b7, 0xd225ea80, 0x8a281226, 0x62930308},
    {0xdc267bea, 0xcde71c63, 0x8589702c, 0x5e05343e},
    {0xd8f7208e, 0xc9cc6948, 0x81216f2e, 0x59bbbcf8},
    {0xd5d7ea91, 0xc5d428ee, 0x7cecdb76, 0x55b1c7d6},
    {0xd2c8534e, 0xc1fccbc9, 0x78e8bb45, 0x51e2e592},
    {0xcfc7da32, 0xbe44d94a, 0x75124a0a, 0x4e4b0369},
    {0xccd6045f, 0xbaaaee41, 0x7166f40f, 0x4ae66284},
    {0xc9f25c5c, 0xb72dbb69, 0x6de45288, 0x47b19045},
    {0xc71c71c7, 0xb3cc040f, 0x6a882804, 0x44a95f5f},
    {0xc453d90f, 0xb0849cd4, 0x67505d2a, 0x41cae1a0},
    {0xc1982b2e, 0xad566a85, 0x643afdc8, 0x3f13625c},
    {0xbee9056f, 0xaa406113, 0x6146361f, 0x3c806169},
    {0xbc46092e, 0xa7418293, 0x5e70506d, 0x3a0f8e8e},
    {0xb9aedba5, 0xa458de58, 0x5bb7b2b1, 0x37bec572},
    {0xb72325b7, 0xa1859022, 0x591adc9a, 0x358c09e2},
    {0xb4a293c2, 0x9ec6bf52, 0x569865a7, 0x33758476},
    {0xb22cd56d, 0x9c1b9e36, 0x542efb6a, 0x31797f8a},
    {0xafc19d86, 0x9983695c, 0x51dd5ffb, 0x2f96647a},
    {0xad60a1d1, 0x96fd66f7, 0x4fa2687c, 0x2dcab91f},
    {0xab099ae9, 0x9488e64b, 0x4d7cfbc9, 0x2c151d8a},
    {0xa8bc441a, 0x92253f20, 0x4b6c1139, 0x2a7449ef},
    {0xa6785b42, 0x8fd1d14a, 0x496eaf82, 0x28e70cc3},
    {0xa43da0ae, 0x8d8e042a, 0x4783eba7, 0x276c4900},
    {0xa20bd701, 0x8b594648, 0x45aae80a, 0x2602f493},
    {0x9fe2c315, 0x89330ce4, 0x43e2d382, 0x24aa16ec},
    {0x9dc22be4, 0x871ad399, 0x422ae88c, 0x2360c7af},
    {0x9ba9da6c, 0x85101c05, 0x40826c88, 0x22262d7b},
    {0x99999999, 0x83126d70, 0x3ee8af07, 0x20f97cd2},
    {0x97913630, 0x81215480, 0x3d5d0922, 0x1fd9f714},
    {0x95907eb8, 0x7f3c62ef, 0x3bdedce0, 0x1ec6e994},
    {0x93974369, 0x7d632f45, 0x3a6d94a9, 0x1dbfacbb},
    {0x91a55615, 0x7b955498, 0x3908a2be, 0x1cc3a33b},
    {0x8fba8a1c, 0x79d2724e, 0x37af80bf, 0x1bd23960},
    {0x8dd6b456, 0x781a2be4, 0x3661af39, 0x1aeae458},
    {0x8bf9ab07, 0x766c28ba, 0x351eb539, 0x1a0d21a2},
    {0x8a2345cc, 0x74c813dd, 0x33e61feb, 0x19387676},
    {0x88535d90, 0x732d9bdc, 0x32b7823a, 0x186c6f3e},
    {0x8689cc7e, 0x719c7297, 0x3192747d, 0x17a89f21},
    {0x84c66df1, 0x70144d19, 0x30769424, 0x16ec9f89},
    {0x83091e6a, 0x6e94e36c, 0x2f63836f, 0x16380fbf},
    {0x8151bb87, 0x6d1df079, 0x2e58e925, 0x158a9484},
    {0x7fa023f1, 0x6baf31de, 0x2d567053, 0x14e3d7ba},
    {0x7df43758, 0x6a4867d3, 0x2c5bc811, 0x1443880e},
    {0x7c4dd664, 0x68e95508, 0x2b68a346, 0x13a958ab},
    {0x7aace2b0, 0x6791be86, 0x2a7cb871, 0x131500ee},
    {0x79113ebc, 0x66416b95, 0x2997c17a, 0x12863c29},
    {0x777acde8, 0x64f825a1, 0x28b97b82, 0x11fcc95c},
    {0x75e9746a, 0x63b5b822, 0x27e1a6b4, 0x11786b03},
    {0x745d1746, 0x6279f081, 0x2710061d, 0x10f8e6da},
    {0x72d59c46, 0x61449e06, 0x26445f86, 0x107e05ac},
    {0x7152e9f4, 0x601591be, 0x257e7b4d, 0x10079327},
    {0x6fd4e793, 0x5eec9e6b, 0x24be2445, 0x0f955da9},
    {0x6e5b7d16, 0x5dc9986e, 0x24032795, 0x0f273620},
    {0x6ce6931d, 0x5cac55b7, 0x234d5496, 0x0ebcefdb},
    {0x6b7612ec, 0x5b94adb2, 0x229c7cbc, 0x0e56606e},
};

// Approximate rsqrt with cubic polynomials.
// The range [1,2] is splitted into 64 equal sub-ranges and the reciprocal
// square root is approximated by a cubic polynomial by the minimax method in
// each subrange. The approximation accuracy fits into 32-33 bits and thus it is
// natural to round coefficients into 32 bit. The constant coefficient can be
// rounded to 33 bits since the most significant bit is always 1 and implicitly
// assumed in the table.
LIBC_INLINE uint64_t rsqrt_approx(uint64_t m) {
  // ULP(m) = 2^-64.
  // Use the top 6 bits as index for looking up polynomial coeffs.
  uint64_t indx = m >> 58;

  uint64_t c0 = static_cast<uint64_t>(RSQRT_COEFFS[indx][0]);
  c0 <<= 31;        // to 64 bit with the space for the implicit bit
  c0 |= 1ull << 63; // add implicit bit

  uint64_t c1 = static_cast<uint64_t>(RSQRT_COEFFS[indx][1]);
  c1 <<= 25; // to 64 bit format

  uint64_t c2 = static_cast<uint64_t>(RSQRT_COEFFS[indx][2]);
  uint64_t c3 = static_cast<uint64_t>(RSQRT_COEFFS[indx][3]);

  uint64_t d = (m << 6) >> 32; // local coordinate in the subrange [0, 2^32]
  uint64_t d2 = (d * d) >> 32; // square of the local coordinate
  uint64_t re = c0 + (d2 * c2 >> 13); // even part of the polynomial (positive)
  uint64_t ro = d * ((c1 + ((d2 * c3) >> 19)) >> 26) >>
                6;      // odd part of the polynomial (negative)
  uint64_t r = re - ro; // maximal error < 1.55e-10 and it is less than 2^-32
  // Newton-Raphson first order step to improve accuracy of the result to almost
  // 64 bits.
  r = rsqrt_newton_raphson(m, r);
  // Adjust in the unlucky case x~1;
  if (LIBC_UNLIKELY(!r))
    --r;
  return r;
}
#endif // LIBC_MATH_HAS_SMALL_TABLES

} // anonymous namespace

LLVM_LIBC_FUNCTION(float128, sqrtf128, (float128 x)) {
  using FPBits = fputil::FPBits<float128>;
  // Get rounding mode.
  uint32_t rm = fputil::get_round();

  FPBits xbits(x);
  UInt128 x_u = xbits.uintval();
  // Bring leading bit of the mantissa to the highest bit.
  //   ulp(x_frac) = 2^-128.
  UInt128 x_frac = xbits.get_mantissa() << (FPBits::EXP_LEN + 1);

  int sign_exp = static_cast<int>(x_u >> FPBits::FRACTION_LEN);

  if (LIBC_UNLIKELY(sign_exp == 0 || sign_exp >= 0x7fff)) {
    // Special cases: NAN, inf, negative numbers
    if (sign_exp >= 0x7fff) {
      // x = -0 or x = inf
      if (xbits.is_zero() || xbits == xbits.inf())
        return x;
      // x is nan
      if (xbits.is_nan()) {
        // pass through quiet nan
        if (xbits.is_quiet_nan())
          return x;
        // transform signaling nan to quiet and return
        return xbits.quiet_nan().get_val();
      }
      // x < 0 or x = -inf
      fputil::set_errno_if_required(EDOM);
      fputil::raise_except_if_required(FE_INVALID);
      return xbits.quiet_nan().get_val();
    }
    // Now x is subnormal or x = +0.

    // x is +0.
    if (x_frac == 0)
      return x;

    // Normalize subnormal inputs.
    sign_exp = -cpp::countl_zero(x_frac);
    int normal_shifts = 1 - sign_exp;
    x_frac <<= normal_shifts;
  }

  // For sign_exp = biased exponent of x = real_exponent + 16383,
  // let f be the real exponent of the output:
  //   f = floor(real_exponent / 2)
  // Then:
  //   floor((sign_exp + 1) / 2) = f + 8192
  // Hence, the biased exponent of the final result is:
  //   f + 16383 = floor((sign_exp + 1) / 2) + 8191.
  // Since the output mantissa will include the hidden bit, we can define the
  // output exponent part:
  //   e2 = floor((sign_exp + 1) / 2) + 8190
  unsigned i = static_cast<unsigned>(1 - (sign_exp & 1));
  uint32_t q2 = (sign_exp + 1) >> 1;
  // Exponent of the final result
  uint32_t e2 = q2 + 8190;

  constexpr uint64_t RSQRT_2[2] = {~0ull,
                                   0xb504f333f9de6484 /* 2^64/sqrt(2) */};

  // Approximate 1/sqrt(1 + x_frac)
  // Error: |r_1 - 1/sqrt(x)| < 2^-62.
  uint64_t r1 = rsqrt_approx(static_cast<uint64_t>(x_frac >> 64));
  // Adjust for the even/odd exponent.
  uint64_t r2 = prod_hi(r1, RSQRT_2[i]);
  unsigned shift = 2 - i;

  // Normalized input:
  //   1 <= x_reduced < 4
  UInt128 x_reduced = (x_frac >> shift) | (UInt128(1) << (126 + i));
  // With r2 ~ 1/sqrt(x) up to 2^-63, we perform another round of Newton-Raphson
  // iteration:
  //   r3 = r2 - r2 * h / 2,
  // for h = r2^2 * x - 1.
  // Then:
  //   sqrt(x) = x * (1 / sqrt(x))
  //           ~ x * r3
  //           = x * (r2 - r2 * h / 2)
  //           = (x * r2) - (x * r2) * h / 2
  UInt128 sx = prod_hi(x_reduced, r2);
  UInt128 h = prod_hi(sx, r2) << 2;
  UInt128 ds = static_cast<UInt128>(prod_hi(static_cast<Int128>(h), sx));
  UInt128 v = (sx << 1) - ds;

  uint32_t nrst = rm == FE_TONEAREST;
  // The result lies within (-2,5) of true square root so we now
  // test that we can correctly round the result taking into account
  // the rounding mode.
  // Check the lowest 14 bits (by clearing and sign-extending the top
  // 32 - 14 = 18 bits).
  int dd = (static_cast<int>(v) << 18) >> 18;

  if (LIBC_UNLIKELY(dd < 4 && dd >= -8)) { // can round correctly?
    // m is almost the final result it can be only 1 ulp off so we
    // just need to test both possibilities. We square it and
    // compare with the initial argument.
    UInt128 m = v >> 15;
    UInt128 m2 = m * m;
    // The difference of the squared result and the argument
    Int128 t0 = static_cast<Int128>(m2 - (x_reduced << 98));
    if (t0 == 0) {
      // the square root is exact
      v = m << 15;
    } else {
      // Add +-1 ulp to m depend on the sign of the difference. Here
      // we do not need to square again since (m+1)^2 = m^2 + 2*m +
      // 1 so just need to add shifted m and 1.
      Int128 t1 = t0;
      Int128 sgn = t0 >> 127; // sign of the difference
      Int128 m_xor_sgn = static_cast<Int128>(m << 1) ^ sgn;
      t1 -= m_xor_sgn;
      t1 += Int128(1) + sgn;

      Int128 sgn1 = t1 >> 127;
      if (LIBC_UNLIKELY(sgn == sgn1)) {
        t0 = t1;
        v -= sgn << 15;
        t1 -= m_xor_sgn;
        t1 += Int128(1) + sgn;
      }

      if (t1 == 0) {
        // 1 ulp offset brings again an exact root
        v = (m - static_cast<UInt128>((sgn << 1) + 1)) << 15;
      } else {
        t1 += t0;
        Int128 side = t1 >> 127; // select what is closer m or m+-1
        v &= ~UInt128(0) << 15;  // wipe the fractional bits
        v -= ((sgn & side) | (~sgn & 1)) << (15 + static_cast<int>(side));
        v |= 1; // add sticky bit since we cannot have an exact mid-point
                // situation
      }
    }
  }

  unsigned frac = static_cast<unsigned>(v) & 0x7fff; // fractional part
  unsigned rnd;                                      // round bit
  if (LIBC_LIKELY(nrst != 0)) {
    rnd = frac >> 14; // round to nearest tie to even
  } else if (rm == FE_UPWARD) {
    rnd = !!frac; // round up
  } else {
    rnd = 0; // round down or round to zero
  }

  v >>= 15; // position mantissa
  v += rnd; // round

  // Set inexact flag only if square root is inexact
  // TODO: We will have to raise FE_INEXACT most of the time, but this
  // operation is very costly, especially in x86-64, since technically, it
  // needs to synchronize both SSE and x87 flags.  Need to investigate
  // further to see how we can make this performant.
  // https://github.com/llvm/llvm-project/issues/126753

  // if(frac) fputil::raise_except_if_required(FE_INEXACT);

  v += static_cast<UInt128>(e2) << FPBits::FRACTION_LEN; // place exponent
  return cpp::bit_cast<float128>(v);
}

} // namespace LIBC_NAMESPACE_DECL