1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
//===-- Half-precision sinpif function ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/sinpif16.h"
#include "hdr/errno_macros.h"
#include "hdr/fenv_macros.h"
#include "sincosf16_utils.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/cast.h"
#include "src/__support/FPUtil/multiply_add.h"
namespace LIBC_NAMESPACE_DECL {
LLVM_LIBC_FUNCTION(float16, sinpif16, (float16 x)) {
using FPBits = typename fputil::FPBits<float16>;
FPBits xbits(x);
uint16_t x_u = xbits.uintval();
uint16_t x_abs = x_u & 0x7fff;
float xf = x;
// Range reduction:
// For |x| > 1/32, we perform range reduction as follows:
// Find k and y such that:
// x = (k + y) * 1/32
// k is an integer
// |y| < 0.5
//
// This is done by performing:
// k = round(x * 32)
// y = x * 32 - k
//
// Once k and y are computed, we then deduce the answer by the sine of sum
// formula:
// sin(x * pi) = sin((k + y) * pi/32)
// = sin(k * pi/32) * cos(y * pi/32) +
// sin(y * pi/32) * cos(k * pi/32)
// For signed zeros
if (LIBC_UNLIKELY(x_abs == 0U))
return x;
// Numbers greater or equal to 2^10 are integers, or infinity, or NaN
if (LIBC_UNLIKELY(x_abs >= 0x6400)) {
// Check for NaN or infinity values
if (LIBC_UNLIKELY(x_abs >= 0x7c00)) {
if (xbits.is_signaling_nan()) {
fputil::raise_except_if_required(FE_INVALID);
return FPBits::quiet_nan().get_val();
}
// If value is equal to infinity
if (x_abs == 0x7c00) {
fputil::set_errno_if_required(EDOM);
fputil::raise_except_if_required(FE_INVALID);
}
return x + FPBits::quiet_nan().get_val();
}
return FPBits::zero(xbits.sign()).get_val();
}
float sin_k, cos_k, sin_y, cosm1_y;
sincospif16_eval(xf, sin_k, cos_k, sin_y, cosm1_y);
if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0))
return FPBits::zero(xbits.sign()).get_val();
// Since, cosm1_y = cos_y - 1, therefore:
// sin(x * pi) = cos_k * sin_y + sin_k + (cosm1_y * sin_k)
return fputil::cast<float16>(fputil::multiply_add(
sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k)));
}
} // namespace LIBC_NAMESPACE_DECL
|