aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/sincos_eval.h
blob: 41a4c75849ff49e1b7db161345dc48ba77b975ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
//===-- Compute sin + cos for small angles ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC_MATH_GENERIC_SINCOS_EVAL_H
#define LLVM_LIBC_SRC_MATH_GENERIC_SINCOS_EVAL_H

#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/integer_literals.h"
#include "src/__support/macros/config.h"

namespace LIBC_NAMESPACE_DECL {

namespace generic {

using fputil::DoubleDouble;
using Float128 = fputil::DyadicFloat<128>;

LIBC_INLINE double sincos_eval(const DoubleDouble &u, DoubleDouble &sin_u,
                               DoubleDouble &cos_u) {
  // Evaluate sin(y) = sin(x - k * (pi/128))
  // We use the degree-7 Taylor approximation:
  //   sin(y) ~ y - y^3/3! + y^5/5! - y^7/7!
  // Then the error is bounded by:
  //   |sin(y) - (y - y^3/3! + y^5/5! - y^7/7!)| < |y|^9/9! < 2^-54/9! < 2^-72.
  // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms
  // < ulp(u_hi^3) gives us:
  //   y - y^3/3! + y^5/5! - y^7/7! = ...
  // ~ u_hi + u_hi^3 * (-1/6 + u_hi^2 * (1/120 - u_hi^2 * 1/5040)) +
  //        + u_lo (1 + u_hi^2 * (-1/2 + u_hi^2 / 24))
  double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58.
  // p1 ~ 1/120 + u_hi^2 / 5040.
  double p1 = fputil::multiply_add(u_hi_sq, -0x1.a01a01a01a01ap-13,
                                   0x1.1111111111111p-7);
  // q1 ~ -1/2 + u_hi^2 / 24.
  double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-5, -0x1.0p-1);
  double u_hi_3 = u_hi_sq * u.hi;
  // p2 ~ -1/6 + u_hi^2 (1/120 - u_hi^2 * 1/5040)
  double p2 = fputil::multiply_add(u_hi_sq, p1, -0x1.5555555555555p-3);
  // q2 ~ 1 + u_hi^2 (-1/2 + u_hi^2 / 24)
  double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0);
  double sin_lo = fputil::multiply_add(u_hi_3, p2, u.lo * q2);
  // Overall, |sin(y) - (u_hi + sin_lo)| < 2*ulp(u_hi^3) < 2^-69.

  // Evaluate cos(y) = cos(x - k * (pi/128))
  // We use the degree-8 Taylor approximation:
  //   cos(y) ~ 1 - y^2/2 + y^4/4! - y^6/6! + y^8/8!
  // Then the error is bounded by:
  //   |cos(y) - (...)| < |y|^10/10! < 2^-81
  // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms
  // < ulp(u_hi^3) gives us:
  //   1 - y^2/2 + y^4/4! - y^6/6! + y^8/8! = ...
  // ~ 1 - u_hi^2/2 + u_hi^4(1/24 + u_hi^2 (-1/720 + u_hi^2/40320)) +
  //     + u_hi u_lo (-1 + u_hi^2/6)
  // We compute 1 - u_hi^2 accurately:
  //   v_hi + v_lo ~ 1 - u_hi^2/2
  // with error <= 2^-105.
  double u_hi_neg_half = (-0.5) * u.hi;
  DoubleDouble v;

#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
  v.hi = fputil::multiply_add(u.hi, u_hi_neg_half, 1.0);
  v.lo = 1.0 - v.hi; // Exact
  v.lo = fputil::multiply_add(u.hi, u_hi_neg_half, v.lo);
#else
  DoubleDouble u_hi_sq_neg_half = fputil::exact_mult(u.hi, u_hi_neg_half);
  v = fputil::exact_add(1.0, u_hi_sq_neg_half.hi);
  v.lo += u_hi_sq_neg_half.lo;
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE

  // r1 ~ -1/720 + u_hi^2 / 40320
  double r1 = fputil::multiply_add(u_hi_sq, 0x1.a01a01a01a01ap-16,
                                   -0x1.6c16c16c16c17p-10);
  // s1 ~ -1 + u_hi^2 / 6
  double s1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-3, -1.0);
  double u_hi_4 = u_hi_sq * u_hi_sq;
  double u_hi_u_lo = u.hi * u.lo;
  // r2 ~ 1/24 + u_hi^2 (-1/720 + u_hi^2 / 40320)
  double r2 = fputil::multiply_add(u_hi_sq, r1, 0x1.5555555555555p-5);
  // s2 ~ v_lo + u_hi * u_lo * (-1 + u_hi^2 / 6)
  double s2 = fputil::multiply_add(u_hi_u_lo, s1, v.lo);
  double cos_lo = fputil::multiply_add(u_hi_4, r2, s2);
  // Overall, |cos(y) - (v_hi + cos_lo)| < 2*ulp(u_hi^4) < 2^-75.

  sin_u = fputil::exact_add(u.hi, sin_lo);
  cos_u = fputil::exact_add(v.hi, cos_lo);

  return fputil::multiply_add(fputil::FPBits<double>(u_hi_3).abs().get_val(),
                              0x1.0p-51, 0x1.0p-105);
}

LIBC_INLINE void sincos_eval(const Float128 &u, Float128 &sin_u,
                             Float128 &cos_u) {
  Float128 u_sq = fputil::quick_mul(u, u);

  // sin(u) ~ x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - x^11/11! + x^13/13!
  constexpr Float128 SIN_COEFFS[] = {
      {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1
      {Sign::NEG, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // -1/3!
      {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/5!
      {Sign::NEG, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // -1/7!
      {Sign::POS, -146, 0xb8ef1d2a'b6399c7d'560e4472'800b8ef2_u128}, // 1/9!
      {Sign::NEG, -153, 0xd7322b3f'aa271c7f'3a3f25c1'bee38f10_u128}, // -1/11!
      {Sign::POS, -160, 0xb092309d'43684be5'1c198e91'd7b4269e_u128}, // 1/13!
  };

  // cos(u) ~ 1 - x^2/2 + x^4/4! - x^6/6! + x^8/8! - x^10/10! + x^12/12!
  constexpr Float128 COS_COEFFS[] = {
      {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
      {Sign::NEG, -128, 0x80000000'00000000'00000000'00000000_u128}, // 1/2
      {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/4!
      {Sign::NEG, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/6!
      {Sign::POS, -143, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/8!
      {Sign::NEG, -149, 0x93f27dbb'c4fae397'780b69f5'333c725b_u128}, // 1/10!
      {Sign::POS, -156, 0x8f76c77f'c6c4bdaa'26d4c3d6'7f425f60_u128}, // 1/12!
  };

  sin_u = fputil::quick_mul(u, fputil::polyeval(u_sq, SIN_COEFFS[0],
                                                SIN_COEFFS[1], SIN_COEFFS[2],
                                                SIN_COEFFS[3], SIN_COEFFS[4],
                                                SIN_COEFFS[5], SIN_COEFFS[6]));
  cos_u = fputil::polyeval(u_sq, COS_COEFFS[0], COS_COEFFS[1], COS_COEFFS[2],
                           COS_COEFFS[3], COS_COEFFS[4], COS_COEFFS[5],
                           COS_COEFFS[6]);
}

} // namespace generic

} // namespace LIBC_NAMESPACE_DECL

#endif // LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_EVAL_H