aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/pow.cpp
blob: 43e99a7acf69057a5967c045a2b0d215dc4bb10d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
//===-- Double-precision x^y function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/pow.h"
#include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
#include "hdr/errno_macros.h"
#include "hdr/fenv_macros.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/sqrt.h" // Speedup for pow(x, 1/2) = sqrt(x)
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY

namespace LIBC_NAMESPACE_DECL {

using fputil::DoubleDouble;

namespace {

// Constants for log2(x) range reduction, generated by Sollya with:
// > for i from 0 to 127 do {
//     r = 2^-8 * ceil( 2^8 * (1 - 2^(-8)) / (1 + i*2^-7) );
//     b = nearestint(log2(r) * 2^41) * 2^-41;
//     c = round(log2(r) - b, D, RN);
//     print("{", -c, ",", -b, "},");
//   };
// This is the same as -log2(RD[i]), with the least significant bits of the
// high part set to be 2^-41, so that the sum of high parts + e_x is exact in
// double precision.
// We also replace the first and the last ones to be 0.
constexpr DoubleDouble LOG2_R_DD[128] = {
    {0.0, 0.0},
    {-0x1.19b14945cf6bap-44, 0x1.72c7ba21p-7},
    {-0x1.95539356f93dcp-43, 0x1.743ee862p-6},
    {0x1.abe0a48f83604p-43, 0x1.184b8e4c5p-5},
    {0x1.635577970e04p-43, 0x1.77394c9d9p-5},
    {-0x1.401fbaaa67e3cp-45, 0x1.d6ebd1f2p-5},
    {-0x1.5b1799ceaeb51p-43, 0x1.1bb32a6008p-4},
    {0x1.7c407050799bfp-43, 0x1.4c560fe688p-4},
    {0x1.da6339da288fcp-43, 0x1.7d60496cf8p-4},
    {0x1.be4f6f22dbbadp-43, 0x1.960caf9ab8p-4},
    {-0x1.c760bc9b188c4p-45, 0x1.c7b528b71p-4},
    {0x1.164e932b2d51cp-44, 0x1.f9c95dc1dp-4},
    {0x1.924ae921f7ecap-45, 0x1.097e38ce6p-3},
    {-0x1.6d25a5b8a19b2p-44, 0x1.22dadc2ab4p-3},
    {0x1.e50a1644ac794p-43, 0x1.3c6fb650ccp-3},
    {0x1.f34baa74a7942p-43, 0x1.494f863b8cp-3},
    {-0x1.8f7aac147fdc1p-46, 0x1.633a8bf438p-3},
    {0x1.f84be19cb9578p-43, 0x1.7046031c78p-3},
    {-0x1.66cccab240e9p-46, 0x1.8a8980abfcp-3},
    {-0x1.3f7a55cd2af4cp-47, 0x1.97c1cb13c8p-3},
    {0x1.3458cde69308cp-43, 0x1.b2602497d4p-3},
    {-0x1.667f21fa8423fp-44, 0x1.bfc67a8p-3},
    {0x1.d2fe4574e09b9p-47, 0x1.dac22d3e44p-3},
    {0x1.367bde40c5e6dp-43, 0x1.e857d3d36p-3},
    {0x1.d45da26510033p-46, 0x1.01d9bbcfa6p-2},
    {-0x1.7204f55bbf90dp-44, 0x1.08bce0d96p-2},
    {-0x1.d4f1b95e0ff45p-43, 0x1.169c05364p-2},
    {0x1.c20d74c0211bfp-44, 0x1.1d982c9d52p-2},
    {0x1.ad89a083e072ap-43, 0x1.249cd2b13cp-2},
    {0x1.cd0cb4492f1bcp-43, 0x1.32bfee370ep-2},
    {-0x1.2101a9685c779p-47, 0x1.39de8e155ap-2},
    {0x1.9451cd394fe8dp-43, 0x1.4106017c3ep-2},
    {0x1.661e393a16b95p-44, 0x1.4f6fbb2cecp-2},
    {-0x1.c6d8d86531d56p-44, 0x1.56b22e6b58p-2},
    {0x1.c1c885adb21d3p-43, 0x1.5dfdcf1eeap-2},
    {0x1.3bb5921006679p-45, 0x1.6552b49986p-2},
    {0x1.1d406db502403p-43, 0x1.6cb0f6865cp-2},
    {0x1.55a63e278bad5p-43, 0x1.7b89f02cf2p-2},
    {-0x1.66ae2a7ada553p-49, 0x1.8304d90c12p-2},
    {-0x1.66cccab240e9p-45, 0x1.8a8980abfcp-2},
    {-0x1.62404772a151dp-45, 0x1.921800924ep-2},
    {0x1.ac9bca36fd02ep-44, 0x1.99b072a96cp-2},
    {0x1.4bc302ffa76fbp-43, 0x1.a8ff97181p-2},
    {0x1.01fea1ec47c71p-43, 0x1.b0b67f4f46p-2},
    {-0x1.f20203b3186a6p-43, 0x1.b877c57b1cp-2},
    {-0x1.2642415d47384p-45, 0x1.c043859e3p-2},
    {-0x1.bc76a2753b99bp-50, 0x1.c819dc2d46p-2},
    {-0x1.da93ae3a5f451p-43, 0x1.cffae611aep-2},
    {-0x1.50e785694a8c6p-43, 0x1.d7e6c0abc4p-2},
    {0x1.c56138c894641p-43, 0x1.dfdd89d586p-2},
    {0x1.5669df6a2b592p-43, 0x1.e7df5fe538p-2},
    {-0x1.ea92d9e0e8ac2p-48, 0x1.efec61b012p-2},
    {0x1.a0331af2e6feap-43, 0x1.f804ae8d0cp-2},
    {0x1.9518ce032f41dp-48, 0x1.0014332bep-1},
    {-0x1.b3b3864c60011p-44, 0x1.042bd4b9a8p-1},
    {-0x1.103e8f00d41c8p-45, 0x1.08494c66b9p-1},
    {0x1.65be75cc3da17p-43, 0x1.0c6caaf0c5p-1},
    {0x1.3676289cd3dd4p-43, 0x1.1096015deep-1},
    {-0x1.41dfc7d7c3321p-43, 0x1.14c560fe69p-1},
    {0x1.e0cda8bd74461p-44, 0x1.18fadb6e2dp-1},
    {0x1.2a606046ad444p-44, 0x1.1d368296b5p-1},
    {0x1.f9ea977a639cp-43, 0x1.217868b0c3p-1},
    {-0x1.50520a377c7ecp-45, 0x1.25c0a0463cp-1},
    {0x1.6e3cb71b554e7p-47, 0x1.2a0f3c3407p-1},
    {-0x1.4275f1035e5e8p-48, 0x1.2e644fac05p-1},
    {-0x1.4275f1035e5e8p-48, 0x1.2e644fac05p-1},
    {-0x1.979a5db68721dp-45, 0x1.32bfee370fp-1},
    {0x1.1ee969a95f529p-43, 0x1.37222bb707p-1},
    {0x1.bb4b69336b66ep-43, 0x1.3b8b1c68fap-1},
    {0x1.d5e6a8a4fb059p-45, 0x1.3ffad4e74fp-1},
    {0x1.3106e404cabb7p-44, 0x1.44716a2c08p-1},
    {0x1.3106e404cabb7p-44, 0x1.44716a2c08p-1},
    {-0x1.9bcaf1aa4168ap-43, 0x1.48eef19318p-1},
    {0x1.1646b761c48dep-44, 0x1.4d7380dcc4p-1},
    {0x1.2f0c0bfe9dbecp-43, 0x1.51ff2e3021p-1},
    {0x1.29904613e33cp-43, 0x1.5692101d9bp-1},
    {0x1.1d406db502403p-44, 0x1.5b2c3da197p-1},
    {0x1.1d406db502403p-44, 0x1.5b2c3da197p-1},
    {-0x1.125d6cbcd1095p-44, 0x1.5fcdce2728p-1},
    {-0x1.bd9b32266d92cp-43, 0x1.6476d98adap-1},
    {0x1.54243b21709cep-44, 0x1.6927781d93p-1},
    {0x1.54243b21709cep-44, 0x1.6927781d93p-1},
    {-0x1.ce60916e52e91p-44, 0x1.6ddfc2a79p-1},
    {0x1.f1f5ae718f241p-43, 0x1.729fd26b7p-1},
    {-0x1.6eb9612e0b4f3p-43, 0x1.7767c12968p-1},
    {-0x1.6eb9612e0b4f3p-43, 0x1.7767c12968p-1},
    {0x1.fed21f9cb2cc5p-43, 0x1.7c37a9227ep-1},
    {0x1.7f5dc57266758p-43, 0x1.810fa51bf6p-1},
    {0x1.7f5dc57266758p-43, 0x1.810fa51bf6p-1},
    {0x1.5b338360c2ae2p-43, 0x1.85efd062c6p-1},
    {-0x1.96fc8f4b56502p-43, 0x1.8ad846cf37p-1},
    {-0x1.96fc8f4b56502p-43, 0x1.8ad846cf37p-1},
    {-0x1.bdc81c4db3134p-44, 0x1.8fc924c89bp-1},
    {0x1.36c101ee1344p-43, 0x1.94c287492cp-1},
    {0x1.36c101ee1344p-43, 0x1.94c287492cp-1},
    {0x1.e41fa0a62e6aep-44, 0x1.99c48be206p-1},
    {-0x1.d97ee9124773bp-46, 0x1.9ecf50bf44p-1},
    {-0x1.d97ee9124773bp-46, 0x1.9ecf50bf44p-1},
    {-0x1.3f94e00e7d6bcp-46, 0x1.a3e2f4ac44p-1},
    {-0x1.6879fa00b120ap-43, 0x1.a8ff971811p-1},
    {-0x1.6879fa00b120ap-43, 0x1.a8ff971811p-1},
    {0x1.1659d8e2d7d38p-44, 0x1.ae255819fp-1},
    {0x1.1e5e0ae0d3f8ap-43, 0x1.b35458761dp-1},
    {0x1.1e5e0ae0d3f8ap-43, 0x1.b35458761dp-1},
    {0x1.484a15babcf88p-43, 0x1.b88cb9a2abp-1},
    {0x1.484a15babcf88p-43, 0x1.b88cb9a2abp-1},
    {0x1.871a7610e40bdp-45, 0x1.bdce9dcc96p-1},
    {-0x1.2d90e5edaeceep-43, 0x1.c31a27dd01p-1},
    {-0x1.2d90e5edaeceep-43, 0x1.c31a27dd01p-1},
    {-0x1.5dd31d962d373p-43, 0x1.c86f7b7ea5p-1},
    {-0x1.5dd31d962d373p-43, 0x1.c86f7b7ea5p-1},
    {-0x1.9ad57391924a7p-43, 0x1.cdcebd2374p-1},
    {-0x1.3167ccc538261p-44, 0x1.d338120a6ep-1},
    {-0x1.3167ccc538261p-44, 0x1.d338120a6ep-1},
    {0x1.c7a4ff65ddbc9p-45, 0x1.d8aba045bp-1},
    {0x1.c7a4ff65ddbc9p-45, 0x1.d8aba045bp-1},
    {-0x1.f9ab3cf74babap-44, 0x1.de298ec0bbp-1},
    {-0x1.f9ab3cf74babap-44, 0x1.de298ec0bbp-1},
    {0x1.52842c1c1e586p-43, 0x1.e3b20546f5p-1},
    {0x1.52842c1c1e586p-43, 0x1.e3b20546f5p-1},
    {0x1.3c6764fc87b4ap-48, 0x1.e9452c8a71p-1},
    {0x1.3c6764fc87b4ap-48, 0x1.e9452c8a71p-1},
    {-0x1.a0976c0a2827dp-44, 0x1.eee32e2aedp-1},
    {-0x1.a0976c0a2827dp-44, 0x1.eee32e2aedp-1},
    {-0x1.a45314dc4fc42p-43, 0x1.f48c34bd1fp-1},
    {-0x1.a45314dc4fc42p-43, 0x1.f48c34bd1fp-1},
    {0x1.ef5d00e390ap-44, 0x1.fa406bd244p-1},
    {0.0, 1.0},
};

bool is_odd_integer(double x) {
  using FPBits = fputil::FPBits<double>;
  FPBits xbits(x);
  uint64_t x_u = xbits.uintval();
  unsigned x_e = static_cast<unsigned>(xbits.get_biased_exponent());
  unsigned lsb =
      static_cast<unsigned>(cpp::countr_zero(x_u | FPBits::EXP_MASK));
  constexpr unsigned UNIT_EXPONENT =
      static_cast<unsigned>(FPBits::EXP_BIAS + FPBits::FRACTION_LEN);
  return (x_e + lsb == UNIT_EXPONENT);
}

bool is_integer(double x) {
  using FPBits = fputil::FPBits<double>;
  FPBits xbits(x);
  uint64_t x_u = xbits.uintval();
  unsigned x_e = static_cast<unsigned>(xbits.get_biased_exponent());
  unsigned lsb =
      static_cast<unsigned>(cpp::countr_zero(x_u | FPBits::EXP_MASK));
  constexpr unsigned UNIT_EXPONENT =
      static_cast<unsigned>(FPBits::EXP_BIAS + FPBits::FRACTION_LEN);
  return (x_e + lsb >= UNIT_EXPONENT);
}

} // namespace

LLVM_LIBC_FUNCTION(double, pow, (double x, double y)) {
  using FPBits = fputil::FPBits<double>;

  FPBits xbits(x), ybits(y);

  bool x_sign = xbits.sign() == Sign::NEG;
  bool y_sign = ybits.sign() == Sign::NEG;

  FPBits x_abs = xbits.abs();
  FPBits y_abs = ybits.abs();

  uint64_t x_mant = xbits.get_mantissa();
  uint64_t y_mant = ybits.get_mantissa();
  uint64_t x_u = xbits.uintval();
  uint64_t x_a = x_abs.uintval();
  uint64_t y_a = y_abs.uintval();

  double e_x = static_cast<double>(xbits.get_exponent());
  uint64_t sign = 0;

  ///////// BEGIN - Check exceptional cases ////////////////////////////////////
  // If x or y is signaling NaN
  if (x_abs.is_signaling_nan() || y_abs.is_signaling_nan()) {
    fputil::raise_except_if_required(FE_INVALID);
    return FPBits::quiet_nan().get_val();
  }

  // The double precision number that is closest to 1 is (1 - 2^-53), which has
  //   log2(1 - 2^-53) ~ -1.715...p-53.
  // So if |y| > |1075 / log2(1 - 2^-53)|, and x is finite:
  //   |y * log2(x)| = 0 or > 1075.
  // Hence x^y will either overflow or underflow if x is not zero.
  if (LIBC_UNLIKELY(y_mant == 0 || y_a > 0x43d7'4910'd52d'3052 ||
                    x_u == FPBits::one().uintval() ||
                    x_u >= FPBits::inf().uintval() ||
                    x_u < FPBits::min_normal().uintval())) {
    // Exceptional exponents.
    if (y == 0.0)
      return 1.0;

    switch (y_a) {
    case 0x3fe0'0000'0000'0000: { // y = +-0.5
      // TODO: speed up x^(-1/2) with rsqrt(x) when available.
      if (LIBC_UNLIKELY(
              (x == 0.0 || x_u == FPBits::inf(Sign::NEG).uintval()))) {
        // pow(-0, 1/2) = +0
        // pow(-inf, 1/2) = +inf
        // Make sure it works correctly for FTZ/DAZ.
        return y_sign ? 1.0 / (x * x) : (x * x);
      }
      return y_sign ? (1.0 / fputil::sqrt<double>(x)) : fputil::sqrt<double>(x);
    }
    case 0x3ff0'0000'0000'0000: // y = +-1.0
      return y_sign ? (1.0 / x) : x;
    case 0x4000'0000'0000'0000: // y = +-2.0;
      return y_sign ? (1.0 / (x * x)) : (x * x);
    }

    // |y| > |1075 / log2(1 - 2^-53)|.
    if (y_a > 0x43d7'4910'd52d'3052) {
      if (y_a >= 0x7ff0'0000'0000'0000) {
        // y is inf or nan
        if (y_mant != 0) {
          // y is NaN
          // pow(1, NaN) = 1
          // pow(x, NaN) = NaN
          return (x_u == FPBits::one().uintval()) ? 1.0 : y;
        }

        // Now y is +-Inf
        if (x_abs.is_nan()) {
          // pow(NaN, +-Inf) = NaN
          return x;
        }

        if (x_a == 0x3ff0'0000'0000'0000) {
          // pow(+-1, +-Inf) = 1.0
          return 1.0;
        }

        if (x == 0.0 && y_sign) {
          // pow(+-0, -Inf) = +inf and raise FE_DIVBYZERO
          fputil::set_errno_if_required(EDOM);
          fputil::raise_except_if_required(FE_DIVBYZERO);
          return FPBits::inf().get_val();
        }
        // pow (|x| < 1, -inf) = +inf
        // pow (|x| < 1, +inf) = 0.0
        // pow (|x| > 1, -inf) = 0.0
        // pow (|x| > 1, +inf) = +inf
        return ((x_a < FPBits::one().uintval()) == y_sign)
                   ? FPBits::inf().get_val()
                   : 0.0;
      }
      // x^y will overflow / underflow in double precision.  Set y to a
      // large enough exponent but not too large, so that the computations
      // won't overflow in double precision.
      y = y_sign ? -0x1.0p100 : 0x1.0p100;
    }

    // y is finite and non-zero.

    if (x_u == FPBits::one().uintval()) {
      // pow(1, y) = 1
      return 1.0;
    }

    // TODO: Speed things up with pow(2, y) = exp2(y) and pow(10, y) = exp10(y).

    if (x == 0.0) {
      bool out_is_neg = x_sign && is_odd_integer(y);
      if (y_sign) {
        // pow(0, negative number) = inf
        fputil::set_errno_if_required(EDOM);
        fputil::raise_except_if_required(FE_DIVBYZERO);
        return FPBits::inf(out_is_neg ? Sign::NEG : Sign::POS).get_val();
      }
      // pow(0, positive number) = 0
      return out_is_neg ? -0.0 : 0.0;
    }

    if (x_a == FPBits::inf().uintval()) {
      bool out_is_neg = x_sign && is_odd_integer(y);
      if (y_sign)
        return out_is_neg ? -0.0 : 0.0;
      return FPBits::inf(out_is_neg ? Sign::NEG : Sign::POS).get_val();
    }

    if (x_a > FPBits::inf().uintval()) {
      // x is NaN.
      // pow (aNaN, 0) is already taken care above.
      return x;
    }

    // Normalize denormal inputs.
    if (x_a < FPBits::min_normal().uintval()) {
      e_x -= 64.0;
      x_mant = FPBits(x * 0x1.0p64).get_mantissa();
    }

    // x is finite and negative, and y is a finite integer.
    if (x_sign) {
      if (is_integer(y)) {
        x = -x;
        if (is_odd_integer(y))
          // sign = -1.0;
          sign = 0x8000'0000'0000'0000;
      } else {
        // pow( negative, non-integer ) = NaN
        fputil::set_errno_if_required(EDOM);
        fputil::raise_except_if_required(FE_INVALID);
        return FPBits::quiet_nan().get_val();
      }
    }
  }

  ///////// END - Check exceptional cases //////////////////////////////////////

  // x^y = 2^( y * log2(x) )
  //     = 2^( y * ( e_x + log2(m_x) ) )
  // First we compute log2(x) = e_x + log2(m_x)

  // Extract exponent field of x.

  // Use the highest 7 fractional bits of m_x as the index for look up tables.
  unsigned idx_x = static_cast<unsigned>(x_mant >> (FPBits::FRACTION_LEN - 7));
  // Add the hidden bit to the mantissa.
  // 1 <= m_x < 2
  FPBits m_x = FPBits(x_mant | 0x3ff0'0000'0000'0000);

  // Reduced argument for log2(m_x):
  //   dx = r * m_x - 1.
  // The computation is exact, and -2^-8 <= dx < 2^-7.
  // Then m_x = (1 + dx) / r, and
  //   log2(m_x) = log2( (1 + dx) / r )
  //             = log2(1 + dx) - log2(r).

  // In order for the overall computations x^y = 2^(y * log2(x)) to have the
  // relative errors < 2^-52 (1ULP), we will need to evaluate the exponent part
  // y * log2(x) with absolute errors < 2^-52 (or better, 2^-53).  Since the
  // whole exponent range for double precision is bounded by
  // |y * log2(x)| < 1076 ~ 2^10, we need to evaluate log2(x) with absolute
  // errors < 2^-53 * 2^-10 = 2^-63.

  // With that requirement, we use the following degree-6 polynomial
  // approximation:
  //   P(dx) ~ log2(1 + dx) / dx
  // Generated by Sollya with:
  // > P = fpminimax(log2(1 + x)/x, 6, [|D...|], [-2^-8, 2^-7]); P;
  // > dirtyinfnorm(log2(1 + x) - x*P, [-2^-8, 2^-7]);
  //   0x1.d03cc...p-66
  constexpr double COEFFS[] = {0x1.71547652b82fep0,  -0x1.71547652b82e7p-1,
                               0x1.ec709dc3b1fd5p-2, -0x1.7154766124215p-2,
                               0x1.2776bd90259d8p-2, -0x1.ec586c6f3d311p-3,
                               0x1.9c4775eccf524p-3};
  // Error: ulp(dx^2) <= (2^-7)^2 * 2^-52 = 2^-66
  // Extra errors from various computations and rounding directions, the overall
  // errors we can be bounded by 2^-65.

  double dx;
  DoubleDouble dx_c0;

  // Perform exact range reduction and exact product dx * c0.
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
  dx = fputil::multiply_add(RD[idx_x], m_x.get_val(), -1.0); // Exact
  dx_c0 = fputil::exact_mult(COEFFS[0], dx);
#else
  double c = FPBits(m_x.uintval() & 0x3fff'e000'0000'0000).get_val();
  dx = fputil::multiply_add(RD[idx_x], m_x.get_val() - c, CD[idx_x]); // Exact
  dx_c0 = fputil::exact_mult<double, 28>(dx, COEFFS[0]);              // Exact
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE

  double dx2 = dx * dx;
  double c0 = fputil::multiply_add(dx, COEFFS[2], COEFFS[1]);
  double c1 = fputil::multiply_add(dx, COEFFS[4], COEFFS[3]);
  double c2 = fputil::multiply_add(dx, COEFFS[6], COEFFS[5]);

  double p = fputil::polyeval(dx2, c0, c1, c2);

  // s = e_x - log2(r) + dx * P(dx)
  // Absolute error bound:
  //   |log2(x) - log2_x.hi - log2_x.lo| < 2^-65.

  // Notice that e_x - log2(r).hi is exact, so we perform an exact sum of
  // e_x - log2(r).hi and the high part of the product dx * c0:
  //   log2_x_hi.hi + log2_x_hi.lo = e_x - log2(r).hi + (dx * c0).hi
  DoubleDouble log2_x_hi =
      fputil::exact_add(e_x + LOG2_R_DD[idx_x].hi, dx_c0.hi);
  // The low part is dx^2 * p + low part of (dx * c0) + low part of -log2(r).
  double log2_x_lo =
      fputil::multiply_add(dx2, p, dx_c0.lo + LOG2_R_DD[idx_x].lo);
  // Perform accurate sums.
  DoubleDouble log2_x = fputil::exact_add(log2_x_hi.hi, log2_x_lo);
  log2_x.lo += log2_x_hi.lo;

  // To compute 2^(y * log2(x)), we break the exponent into 3 parts:
  //   y * log(2) = hi + mid + lo, where
  //   hi is an integer
  //   mid * 2^6 is an integer
  //   |lo| <= 2^-7
  // Then:
  //   x^y = 2^(y * log2(x)) = 2^hi * 2^mid * 2^lo,
  // In which 2^mid is obtained from a look-up table of size 2^6 = 64 elements,
  // and 2^lo ~ 1 + lo * P(lo).
  // Thus, we have:
  //   hi + mid = 2^-6 * round( 2^6 * y * log2(x) )
  // If we restrict the output such that |hi| < 150, (hi + mid) uses (8 + 6)
  // bits, hence, if we use double precision to perform
  //   round( 2^6 * y * log2(x))
  // the lo part is bounded by 2^-7 + 2^(-(52 - 14)) = 2^-7 + 2^-38

  // In the following computations:
  //   y6  = 2^6 * y
  //   hm  = 2^6 * (hi + mid) = round(2^6 * y * log2(x)) ~ round(y6 * s)
  //   lo6 = 2^6 * lo = 2^6 * (y - (hi + mid)) = y6 * log2(x) - hm.
  double y6 = y * 0x1.0p6; // Exact.

  DoubleDouble y6_log2_x = fputil::exact_mult(y6, log2_x.hi);
  y6_log2_x.lo = fputil::multiply_add(y6, log2_x.lo, y6_log2_x.lo);

  // Check overflow/underflow.
  double scale = 1.0;

  // |2^(hi + mid) - exp2_hi_mid| <= ulp(exp2_hi_mid) / 2
  // Clamp the exponent part into smaller range that fits double precision.
  // For those exponents that are out of range, the final conversion will round
  // them correctly to inf/max float or 0/min float accordingly.
  constexpr double UPPER_EXP_BOUND = 512.0 * 0x1.0p6;
  if (LIBC_UNLIKELY(FPBits(y6_log2_x.hi).abs().get_val() >= UPPER_EXP_BOUND)) {
    if (FPBits(y6_log2_x.hi).sign() == Sign::POS) {
      scale = 0x1.0p512;
      y6_log2_x.hi -= 512.0 * 64.0;
      if (y6_log2_x.hi > 513.0 * 64.0)
        y6_log2_x.hi = 513.0 * 64.0;
    } else {
      scale = 0x1.0p-512;
      y6_log2_x.hi += 512.0 * 64.0;
      if (y6_log2_x.hi < (-1076.0 + 512.0) * 64.0)
        y6_log2_x.hi = -564.0 * 64.0;
    }
  }

  double hm = fputil::nearest_integer(y6_log2_x.hi);

  // lo6 = 2^6 * lo.
  double lo6_hi = y6_log2_x.hi - hm;
  double lo6 = lo6_hi + y6_log2_x.lo;

  int hm_i = static_cast<int>(hm);
  unsigned idx_y = static_cast<unsigned>(hm_i) & 0x3f;

  // 2^hi
  int64_t exp2_hi_i = static_cast<int64_t>(
      static_cast<uint64_t>(static_cast<int64_t>(hm_i >> 6))
      << FPBits::FRACTION_LEN);
  // 2^mid
  int64_t exp2_mid_hi_i =
      static_cast<int64_t>(FPBits(EXP2_MID1[idx_y].hi).uintval());
  int64_t exp2_mid_lo_i =
      static_cast<int64_t>(FPBits(EXP2_MID1[idx_y].mid).uintval());
  // (-1)^sign * 2^hi * 2^mid
  // Error <= 2^hi * 2^-53
  uint64_t exp2_hm_hi_i =
      static_cast<uint64_t>(exp2_hi_i + exp2_mid_hi_i) + sign;
  // The low part could be 0.
  uint64_t exp2_hm_lo_i =
      idx_y != 0 ? static_cast<uint64_t>(exp2_hi_i + exp2_mid_lo_i) + sign
                 : sign;
  double exp2_hm_hi = FPBits(exp2_hm_hi_i).get_val();
  double exp2_hm_lo = FPBits(exp2_hm_lo_i).get_val();

  // Degree-5 polynomial approximation P(lo6) ~ 2^(lo6 / 2^6) = 2^(lo).
  // Generated by Sollya with:
  // > P = fpminimax(2^(x/64), 5, [|1, D...|], [-2^-1, 2^-1]);
  // > dirtyinfnorm(2^(x/64) - P, [-0.5, 0.5]);
  // 0x1.a2b77e618f5c4c176fd11b7659016cde5de83cb72p-60
  constexpr double EXP2_COEFFS[] = {0x1p0,
                                    0x1.62e42fefa39efp-7,
                                    0x1.ebfbdff82a23ap-15,
                                    0x1.c6b08d7076268p-23,
                                    0x1.3b2ad33f8b48bp-31,
                                    0x1.5d870c4d84445p-40};

  double lo6_sqr = lo6 * lo6;

  double d0 = fputil::multiply_add(lo6, EXP2_COEFFS[2], EXP2_COEFFS[1]);
  double d1 = fputil::multiply_add(lo6, EXP2_COEFFS[4], EXP2_COEFFS[3]);
  double pp = fputil::polyeval(lo6_sqr, d0, d1, EXP2_COEFFS[5]);

  double r = fputil::multiply_add(exp2_hm_hi * lo6, pp, exp2_hm_lo);
  r += exp2_hm_hi;

  return r * scale;
}

} // namespace LIBC_NAMESPACE_DECL