aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/expxf16.h
blob: b17b14fa2d756b634eb6e182122423745ed9e6af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//===-- Common utilities for half-precision exponential functions ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPXF16_H
#define LLVM_LIBC_SRC_MATH_GENERIC_EXPXF16_H

#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/cast.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
#include <stdint.h>

#include "src/__support/math/exp10_float16_constants.h"
#include "src/__support/math/expf16_utils.h"

namespace LIBC_NAMESPACE_DECL {

LIBC_INLINE ExpRangeReduction exp2_range_reduction(float16 x) {
  // For -25 < x < 16, to compute 2^x, we perform the following range reduction:
  // find hi, mid, lo, such that:
  //   x = hi + mid + lo, in which
  //     hi is an integer,
  //     mid * 2^3 is an integer,
  //     -2^(-4) <= lo < 2^(-4).
  // In particular,
  //   hi + mid = round(x * 2^3) * 2^(-3).
  // Then,
  //   2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo.
  // We store 2^mid in the lookup table EXP2_MID_BITS, and compute 2^hi * 2^mid
  // by adding hi to the exponent field of 2^mid.  2^lo is computed using a
  // degree-3 minimax polynomial generated by Sollya.

  float xf = x;
  float kf = fputil::nearest_integer(xf * 0x1.0p+3f);
  int x_hi_mid = static_cast<int>(kf);
  unsigned x_hi = static_cast<unsigned>(x_hi_mid) >> 3;
  unsigned x_mid = static_cast<unsigned>(x_hi_mid) & 0x7;
  // lo = x - (hi + mid) = round(x * 2^3) * (-2^(-3)) + x
  float lo = fputil::multiply_add(kf, -0x1.0p-3f, xf);

  uint32_t exp2_hi_mid_bits =
      EXP2_MID_BITS[x_mid] +
      static_cast<uint32_t>(x_hi << fputil::FPBits<float>::FRACTION_LEN);
  float exp2_hi_mid = fputil::FPBits<float>(exp2_hi_mid_bits).get_val();
  // Degree-3 minimax polynomial generated by Sollya with the following
  // commands:
  //   > display = hexadecimal;
  //   > P = fpminimax((2^x - 1)/x, 2, [|SG...|], [-2^-4, 2^-4]);
  //   > 1 + x * P;
  float exp2_lo = fputil::polyeval(lo, 0x1p+0f, 0x1.62e43p-1f, 0x1.ec0aa6p-3f,
                                   0x1.c6b4a6p-5f);
  return {exp2_hi_mid, exp2_lo};
}

// Generated by Sollya with the following commands:
//   > display = hexadecimal;
//   > round(log2(exp(1)), SG, RN);
static constexpr float LOG2F_E = 0x1.715476p+0f;

// Generated by Sollya with the following commands:
//   > display = hexadecimal;
//   > round(log(2), SG, RN);
static constexpr float LOGF_2 = 0x1.62e43p-1f;

// Generated by Sollya with the following commands:
//   > display = hexadecimal;
//   > for i from 0 to 31 do printsingle(round(2^(i * 2^-5), SG, RN));
static constexpr cpp::array<uint32_t, 32> EXP2_MID_5_BITS = {
    0x3f80'0000U, 0x3f82'cd87U, 0x3f85'aac3U, 0x3f88'980fU, 0x3f8b'95c2U,
    0x3f8e'a43aU, 0x3f91'c3d3U, 0x3f94'f4f0U, 0x3f98'37f0U, 0x3f9b'8d3aU,
    0x3f9e'f532U, 0x3fa2'7043U, 0x3fa5'fed7U, 0x3fa9'a15bU, 0x3fad'583fU,
    0x3fb1'23f6U, 0x3fb5'04f3U, 0x3fb8'fbafU, 0x3fbd'08a4U, 0x3fc1'2c4dU,
    0x3fc5'672aU, 0x3fc9'b9beU, 0x3fce'248cU, 0x3fd2'a81eU, 0x3fd7'44fdU,
    0x3fdb'fbb8U, 0x3fe0'ccdfU, 0x3fe5'b907U, 0x3fea'c0c7U, 0x3fef'e4baU,
    0x3ff5'257dU, 0x3ffa'83b3U,
};

// This function correctly calculates sinh(x) and cosh(x) by calculating exp(x)
// and exp(-x) simultaneously.
// To compute e^x, we perform the following range reduction:
// find hi, mid, lo such that:
//   x = (hi + mid) * log(2) + lo, in which
//     hi is an integer,
//     0 <= mid * 2^5 < 32 is an integer
//     -2^(-5) <= lo * log2(e) <= 2^-5.
// In particular,
//   hi + mid = round(x * log2(e) * 2^5) * 2^(-5).
// Then,
//   e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo.
// We store 2^mid in the lookup table EXP2_MID_5_BITS, and compute 2^hi * 2^mid
// by adding hi to the exponent field of 2^mid.
// e^lo is computed using a degree-3 minimax polynomial generated by Sollya:
//   e^lo ~ P(lo)
//        = 1 + lo + c2 * lo^2 + ... + c5 * lo^5
//        = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4)
//        = P_even + lo * P_odd
// To compute e^(-x), notice that:
//   e^(-x) = 2^(-(hi + mid)) * e^(-lo)
//          ~ 2^(-(hi + mid)) * P(-lo)
//          = 2^(-(hi + mid)) * (P_even - lo * P_odd)
// So:
//   sinh(x) = (e^x - e^(-x)) / 2
//           ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) -
//                    2^(-(hi + mid)) * (P_even - lo * P_odd))
//           = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) +
//                    lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid))))
// And similarly:
//   cosh(x) = (e^x + e^(-x)) / 2
//           ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) +
//                    lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid))))
// The main point of these formulas is that the expensive part of calculating
// the polynomials approximating lower parts of e^x and e^(-x) is shared and
// only done once.
template <bool IsSinh> LIBC_INLINE float16 eval_sinh_or_cosh(float16 x) {
  float xf = x;
  float kf = fputil::nearest_integer(xf * (LOG2F_E * 0x1.0p+5f));
  int x_hi_mid_p = static_cast<int>(kf);
  int x_hi_mid_m = -x_hi_mid_p;

  unsigned x_hi_p = static_cast<unsigned>(x_hi_mid_p) >> 5;
  unsigned x_hi_m = static_cast<unsigned>(x_hi_mid_m) >> 5;
  unsigned x_mid_p = static_cast<unsigned>(x_hi_mid_p) & 0x1f;
  unsigned x_mid_m = static_cast<unsigned>(x_hi_mid_m) & 0x1f;

  uint32_t exp2_hi_mid_bits_p =
      EXP2_MID_5_BITS[x_mid_p] +
      static_cast<uint32_t>(x_hi_p << fputil::FPBits<float>::FRACTION_LEN);
  uint32_t exp2_hi_mid_bits_m =
      EXP2_MID_5_BITS[x_mid_m] +
      static_cast<uint32_t>(x_hi_m << fputil::FPBits<float>::FRACTION_LEN);
  // exp2_hi_mid_p = 2^(hi + mid)
  float exp2_hi_mid_p = fputil::FPBits<float>(exp2_hi_mid_bits_p).get_val();
  // exp2_hi_mid_m = 2^(-(hi + mid))
  float exp2_hi_mid_m = fputil::FPBits<float>(exp2_hi_mid_bits_m).get_val();

  // exp2_hi_mid_sum = 2^(hi + mid) + 2^(-(hi + mid))
  float exp2_hi_mid_sum = exp2_hi_mid_p + exp2_hi_mid_m;
  // exp2_hi_mid_diff = 2^(hi + mid) - 2^(-(hi + mid))
  float exp2_hi_mid_diff = exp2_hi_mid_p - exp2_hi_mid_m;

  // lo = x - (hi + mid) = round(x * log2(e) * 2^5) * log(2) * (-2^(-5)) + x
  float lo = fputil::multiply_add(kf, LOGF_2 * -0x1.0p-5f, xf);
  float lo_sq = lo * lo;

  // Degree-3 minimax polynomial generated by Sollya with the following
  // commands:
  //   > display = hexadecimal;
  //   > P = fpminimax(expm1(x)/x, 2, [|SG...|], [-2^-5, 2^-5]);
  //   > 1 + x * P;
  constexpr cpp::array<float, 4> COEFFS = {0x1p+0f, 0x1p+0f, 0x1.0004p-1f,
                                           0x1.555778p-3f};
  float half_p_odd =
      fputil::polyeval(lo_sq, COEFFS[1] * 0.5f, COEFFS[3] * 0.5f);
  float half_p_even =
      fputil::polyeval(lo_sq, COEFFS[0] * 0.5f, COEFFS[2] * 0.5f);

  // sinh(x) = lo * (0.5 * P_odd * (2^(hi + mid) + 2^(-(hi + mid)))) +
  //                (0.5 * P_even * (2^(hi + mid) - 2^(-(hi + mid))))
  if constexpr (IsSinh)
    return fputil::cast<float16>(fputil::multiply_add(
        lo, half_p_odd * exp2_hi_mid_sum, half_p_even * exp2_hi_mid_diff));
  // cosh(x) = lo * (0.5 * P_odd * (2^(hi + mid) - 2^(-(hi + mid)))) +
  //                (0.5 * P_even * (2^(hi + mid) + 2^(-(hi + mid))))
  return fputil::cast<float16>(fputil::multiply_add(
      lo, half_p_odd * exp2_hi_mid_diff, half_p_even * exp2_hi_mid_sum));
}

// Generated by Sollya with the following commands:
//   > display = hexadecimal;
//   > for i from 0 to 31 do print(round(log(1 + i * 2^-5), SG, RN));
constexpr cpp::array<float, 32> LOGF_F = {
    0x0p+0f,        0x1.f829bp-6f,  0x1.f0a30cp-5f, 0x1.6f0d28p-4f,
    0x1.e27076p-4f, 0x1.29553p-3f,  0x1.5ff308p-3f, 0x1.9525aap-3f,
    0x1.c8ff7cp-3f, 0x1.fb9186p-3f, 0x1.1675cap-2f, 0x1.2e8e2cp-2f,
    0x1.4618bcp-2f, 0x1.5d1bdcp-2f, 0x1.739d8p-2f,  0x1.89a338p-2f,
    0x1.9f323ep-2f, 0x1.b44f78p-2f, 0x1.c8ff7cp-2f, 0x1.dd46ap-2f,
    0x1.f128f6p-2f, 0x1.02552ap-1f, 0x1.0be72ep-1f, 0x1.154c3ep-1f,
    0x1.1e85f6p-1f, 0x1.2795e2p-1f, 0x1.307d74p-1f, 0x1.393e0ep-1f,
    0x1.41d8fep-1f, 0x1.4a4f86p-1f, 0x1.52a2d2p-1f, 0x1.5ad404p-1f,
};

// Generated by Sollya with the following commands:
//   > display = hexadecimal;
//   > for i from 0 to 31 do print(round(log2(1 + i * 2^-5), SG, RN));
constexpr cpp::array<float, 32> LOG2F_F = {
    0x0p+0f,        0x1.6bad38p-5f, 0x1.663f7p-4f,  0x1.08c588p-3f,
    0x1.5c01a4p-3f, 0x1.acf5e2p-3f, 0x1.fbc16cp-3f, 0x1.24407ap-2f,
    0x1.49a784p-2f, 0x1.6e221cp-2f, 0x1.91bba8p-2f, 0x1.b47ecp-2f,
    0x1.d6753ep-2f, 0x1.f7a856p-2f, 0x1.0c105p-1f,  0x1.1bf312p-1f,
    0x1.2b8034p-1f, 0x1.3abb4p-1f,  0x1.49a784p-1f, 0x1.584822p-1f,
    0x1.66a008p-1f, 0x1.74b1fep-1f, 0x1.82809ep-1f, 0x1.900e62p-1f,
    0x1.9d5dap-1f,  0x1.aa709p-1f,  0x1.b74948p-1f, 0x1.c3e9cap-1f,
    0x1.d053f6p-1f, 0x1.dc899ap-1f, 0x1.e88c6cp-1f, 0x1.f45e08p-1f,
};

// Generated by Sollya with the following commands:
//   > display = hexadecimal;
//   > for i from 0 to 31 do print(round(log10(1 + i * 2^-5), SG, RN));
constexpr cpp::array<float, 32> LOG10F_F = {
    0x0p+0f,        0x1.b5e908p-7f, 0x1.af5f92p-6f, 0x1.3ed11ap-5f,
    0x1.a30a9ep-5f, 0x1.02428cp-4f, 0x1.31b306p-4f, 0x1.5fe804p-4f,
    0x1.8cf184p-4f, 0x1.b8de4ep-4f, 0x1.e3bc1ap-4f, 0x1.06cbd6p-3f,
    0x1.1b3e72p-3f, 0x1.2f3b6ap-3f, 0x1.42c7e8p-3f, 0x1.55e8c6p-3f,
    0x1.68a288p-3f, 0x1.7af974p-3f, 0x1.8cf184p-3f, 0x1.9e8e7cp-3f,
    0x1.afd3e4p-3f, 0x1.c0c514p-3f, 0x1.d1653p-3f,  0x1.e1b734p-3f,
    0x1.f1bdeep-3f, 0x1.00be06p-2f, 0x1.087a08p-2f, 0x1.101432p-2f,
    0x1.178da6p-2f, 0x1.1ee778p-2f, 0x1.2622bp-2f,  0x1.2d404cp-2f,
};

// Generated by Sollya with the following commands:
//   > display = hexadecimal;
//   > for i from 0 to 31 do print(round(1 / (1 + i * 2^-5), SG, RN));
constexpr cpp::array<float, 32> ONE_OVER_F_F = {
    0x1p+0f,        0x1.f07c2p-1f,  0x1.e1e1e2p-1f, 0x1.d41d42p-1f,
    0x1.c71c72p-1f, 0x1.bacf92p-1f, 0x1.af286cp-1f, 0x1.a41a42p-1f,
    0x1.99999ap-1f, 0x1.8f9c18p-1f, 0x1.861862p-1f, 0x1.7d05f4p-1f,
    0x1.745d18p-1f, 0x1.6c16c2p-1f, 0x1.642c86p-1f, 0x1.5c9882p-1f,
    0x1.555556p-1f, 0x1.4e5e0ap-1f, 0x1.47ae14p-1f, 0x1.414142p-1f,
    0x1.3b13b2p-1f, 0x1.3521dp-1f,  0x1.2f684cp-1f, 0x1.29e412p-1f,
    0x1.24924ap-1f, 0x1.1f7048p-1f, 0x1.1a7b96p-1f, 0x1.15b1e6p-1f,
    0x1.111112p-1f, 0x1.0c9714p-1f, 0x1.08421p-1f,  0x1.041042p-1f,
};

} // namespace LIBC_NAMESPACE_DECL

#endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPXF16_H