1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
//===-- Single-precision general exp/log functions ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
#define LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
#include "common_constants.h"
#include "src/__support/common.h"
#include "src/__support/macros/properties/cpu_features.h"
#include "src/__support/math/acoshf_utils.h"
#include "src/__support/math/exp10f_utils.h"
#include "src/__support/math/exp_utils.h"
namespace LIBC_NAMESPACE_DECL {
constexpr int LOG_P1_BITS = 6;
constexpr int LOG_P1_SIZE = 1 << LOG_P1_BITS;
// The function correctly calculates sinh(x) and cosh(x) by calculating exp(x)
// and exp(-x) simultaneously.
// To compute e^x, we perform the following range
// reduction: find hi, mid, lo such that:
// x = (hi + mid) * log(2) + lo, in which
// hi is an integer,
// 0 <= mid * 2^5 < 32 is an integer
// -2^(-6) <= lo * log2(e) <= 2^-6.
// In particular,
// hi + mid = round(x * log2(e) * 2^5) * 2^(-5).
// Then,
// e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo.
// 2^mid is stored in the lookup table of 32 elements.
// e^lo is computed using a degree-5 minimax polynomial
// generated by Sollya:
// e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5
// = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4)
// = P_even + lo * P_odd
// We perform 2^hi * 2^mid by simply add hi to the exponent field
// of 2^mid.
// To compute e^(-x), notice that:
// e^(-x) = 2^(-(hi + mid)) * e^(-lo)
// ~ 2^(-(hi + mid)) * P(-lo)
// = 2^(-(hi + mid)) * (P_even - lo * P_odd)
// So:
// sinh(x) = (e^x - e^(-x)) / 2
// ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) -
// 2^(-(hi + mid)) * (P_even - lo * P_odd))
// = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) +
// lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid))))
// And similarly:
// cosh(x) = (e^x + e^(-x)) / 2
// ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) +
// lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid))))
// The main point of these formulas is that the expensive part of calculating
// the polynomials approximating lower parts of e^(x) and e^(-x) are shared
// and only done once.
template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) {
double xd = static_cast<double>(x);
// kd = round(x * log2(e) * 2^5)
// k_p = round(x * log2(e) * 2^5)
// k_m = round(-x * log2(e) * 2^5)
double kd;
int k_p, k_m;
#ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
kd = fputil::nearest_integer(ExpBase::LOG2_B * xd);
k_p = static_cast<int>(kd);
k_m = -k_p;
#else
constexpr double HALF_WAY[2] = {0.5, -0.5};
k_p = static_cast<int>(
fputil::multiply_add(xd, ExpBase::LOG2_B, HALF_WAY[x < 0.0f]));
k_m = -k_p;
kd = static_cast<double>(k_p);
#endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
// hi = floor(kf * 2^(-5))
// exp_hi = shift hi to the exponent field of double precision.
int64_t exp_hi_p = static_cast<int64_t>((k_p >> ExpBase::MID_BITS))
<< fputil::FPBits<double>::FRACTION_LEN;
int64_t exp_hi_m = static_cast<int64_t>((k_m >> ExpBase::MID_BITS))
<< fputil::FPBits<double>::FRACTION_LEN;
// mh_p = 2^(hi + mid)
// mh_m = 2^(-(hi + mid))
// mh_bits_* = bit field of mh_*
int64_t mh_bits_p = ExpBase::EXP_2_MID[k_p & ExpBase::MID_MASK] + exp_hi_p;
int64_t mh_bits_m = ExpBase::EXP_2_MID[k_m & ExpBase::MID_MASK] + exp_hi_m;
double mh_p = fputil::FPBits<double>(uint64_t(mh_bits_p)).get_val();
double mh_m = fputil::FPBits<double>(uint64_t(mh_bits_m)).get_val();
// mh_sum = 2^(hi + mid) + 2^(-(hi + mid))
double mh_sum = mh_p + mh_m;
// mh_diff = 2^(hi + mid) - 2^(-(hi + mid))
double mh_diff = mh_p - mh_m;
// dx = lo = x - (hi + mid) * log(2)
double dx =
fputil::multiply_add(kd, ExpBase::M_LOGB_2_LO,
fputil::multiply_add(kd, ExpBase::M_LOGB_2_HI, xd));
double dx2 = dx * dx;
// c0 = 1 + COEFFS[0] * lo^2
// P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2
double p_even = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[0] * 0.5,
ExpBase::COEFFS[2] * 0.5);
// P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2
double p_odd = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[1] * 0.5,
ExpBase::COEFFS[3] * 0.5);
double r;
if constexpr (is_sinh)
r = fputil::multiply_add(dx * mh_sum, p_odd, p_even * mh_diff);
else
r = fputil::multiply_add(dx * mh_diff, p_odd, p_even * mh_sum);
return r;
}
// x should be positive, normal finite value
// TODO: Simplify range reduction and polynomial degree for float16.
// See issue #137190.
LIBC_INLINE static float log_eval_f(float x) {
// For x = 2^ex * (1 + mx), logf(x) = ex * logf(2) + logf(1 + mx).
using FPBits = fputil::FPBits<float>;
FPBits xbits(x);
float ex = static_cast<float>(xbits.get_exponent());
// p1 is the leading 7 bits of mx, i.e.
// p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7).
int p1 = static_cast<int>(xbits.get_mantissa() >> (FPBits::FRACTION_LEN - 7));
// Set bits to (1 + (mx - p1*2^(-7)))
xbits.set_uintval(xbits.uintval() & (FPBits::FRACTION_MASK >> 7));
xbits.set_biased_exponent(FPBits::EXP_BIAS);
// dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)).
float dx = (xbits.get_val() - 1.0f) * ONE_OVER_F_FLOAT[p1];
// Minimax polynomial for log(1 + dx), generated using Sollya:
// > P = fpminimax(log(1 + x)/x, 6, [|SG...|], [0, 2^-7]);
// > Q = (P - 1) / x;
// > for i from 0 to degree(Q) do print(coeff(Q, i));
constexpr float COEFFS[6] = {-0x1p-1f, 0x1.555556p-2f, -0x1.00022ep-2f,
0x1.9ea056p-3f, -0x1.e50324p-2f, 0x1.c018fp3f};
float dx2 = dx * dx;
float c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]);
float c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]);
float c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]);
float p = fputil::polyeval(dx2, dx, c1, c2, c3);
// Generated by Sollya with the following commands:
// > display = hexadecimal;
// > round(log(2), SG, RN);
constexpr float LOGF_2 = 0x1.62e43p-1f;
float result = fputil::multiply_add(ex, LOGF_2, LOG_F_FLOAT[p1] + p);
return result;
}
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
|