1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
//===-- Single-precision erf(x) function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/erff.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
namespace LIBC_NAMESPACE_DECL {
// Polynomials approximating erf(x)/x on ( k/8, (k + 1)/8 ) generated by Sollya
// with:
// > P = fpminimax(erf(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14|], [|D...|],
// [k/8, (k + 1)/8]);
// for k = 0..31.
constexpr double COEFFS[32][8] = {
{0x1.20dd750429b6dp0, -0x1.812746b037753p-2, 0x1.ce2f219e8596ap-4,
-0x1.b82cdacb78fdap-6, 0x1.56479297dfda5p-8, -0x1.8b3ac5455ef02p-11,
-0x1.126fcac367e3bp-8, 0x1.2d0bdb3ba4984p-4},
{0x1.20dd750429b6dp0, -0x1.812746b0379a8p-2, 0x1.ce2f21a03cf2ap-4,
-0x1.b82ce30de083ep-6, 0x1.565bcad3eb60fp-8, -0x1.c02c66f659256p-11,
0x1.f92f673385229p-14, -0x1.def402648ae9p-17},
{0x1.20dd750429b34p0, -0x1.812746b032dcep-2, 0x1.ce2f219d84aaep-4,
-0x1.b82ce22dcf139p-6, 0x1.565b9efcd4af1p-8, -0x1.c021f1af414bcp-11,
0x1.f7c6d177eff82p-14, -0x1.c9e4410dcf865p-17},
{0x1.20dd750426eabp0, -0x1.812746ae592c7p-2, 0x1.ce2f211525f14p-4,
-0x1.b82ccc125e63fp-6, 0x1.56596f261cfd3p-8, -0x1.bfde1ff8eeecfp-11,
0x1.f31a9d15dc5d8p-14, -0x1.a5a4362844b3cp-17},
{0x1.20dd75039c705p0, -0x1.812746777e74dp-2, 0x1.ce2f17af98a1bp-4,
-0x1.b82be4b817cbep-6, 0x1.564bec2e2962ep-8, -0x1.bee86f9da3558p-11,
0x1.e9443689dc0ccp-14, -0x1.79c0f230805d8p-17},
{0x1.20dd74f811211p0, -0x1.81274371a3e8fp-2, 0x1.ce2ec038262e5p-4,
-0x1.b8265b82c5e1fp-6, 0x1.5615a2e239267p-8, -0x1.bc63ae023dcebp-11,
0x1.d87c2102f7e06p-14, -0x1.49584bea41d62p-17},
{0x1.20dd746d063e3p0, -0x1.812729a8a950fp-2, 0x1.ce2cb0a2df232p-4,
-0x1.b80eca1f51278p-6, 0x1.5572e26c46815p-8, -0x1.b715e5638b65ep-11,
0x1.bfbb195484968p-14, -0x1.177a565c15c52p-17},
{0x1.20dd701b44486p0, -0x1.812691145f237p-2, 0x1.ce23a06b8cfd9p-4,
-0x1.b7c1dc7245288p-6, 0x1.53e92f7f397ddp-8, -0x1.ad97cc4acf0b2p-11,
0x1.9f028b2b09b71p-14, -0x1.cdc4da08da8c1p-18},
{0x1.20dd5715ac332p0, -0x1.8123e680bd0ebp-2, 0x1.ce0457aded691p-4,
-0x1.b6f52d52bed4p-6, 0x1.50c291b84414cp-8, -0x1.9ea246b1ad4a9p-11,
0x1.77654674e0cap-14, -0x1.737c11a1bcebbp-18},
{0x1.20dce6593e114p0, -0x1.811a59c02eadcp-2, 0x1.cdab53c7cd7d5p-4,
-0x1.b526d2e321eedp-6, 0x1.4b1d32cd8b994p-8, -0x1.8963143ec0a1ep-11,
0x1.4ad5700e4db91p-14, -0x1.231e100e43ef2p-18},
{0x1.20db48bfd5a62p0, -0x1.80fdd84f9e308p-2, 0x1.ccd340d462983p-4,
-0x1.b196a2928768p-6, 0x1.4210c2c13a0f7p-8, -0x1.6dbdfb4ff71aep-11,
0x1.1bca2d17fbd71p-14, -0x1.bca36f90c7cf5p-19},
{0x1.20d64b2f8f508p0, -0x1.80b4d4f19fa8bp-2, 0x1.cb088197262e3p-4,
-0x1.ab51fd02e5b99p-6, 0x1.34e1e5e81a632p-8, -0x1.4c66377b502cep-11,
0x1.d9ad25066213cp-15, -0x1.4b0df7dd0cfa1p-19},
{0x1.20c8fc1243576p0, -0x1.8010cb2009e27p-2, 0x1.c7a47e9299315p-4,
-0x1.a155be5683654p-6, 0x1.233502694997bp-8, -0x1.26c94b7d813p-11,
0x1.8094f1de25fb9p-15, -0x1.e0e3d776c6eefp-20},
{0x1.20a9bd1611bc1p0, -0x1.7ec7fbce83f9p-2, 0x1.c1d757d7317b7p-4,
-0x1.92c160cd589fp-6, 0x1.0d307269cc5c2p-8, -0x1.fda5b0d2d1879p-12,
0x1.2fdd7b3b14a7fp-15, -0x1.54eed4a26af5ap-20},
{0x1.20682834f943dp0, -0x1.7c73f747bf5a9p-2, 0x1.b8c2db4a9ffd1p-4,
-0x1.7f0e4ffe989ecp-6, 0x1.e7061eae4166ep-9, -0x1.ad36e873fff2dp-12,
0x1.d39222396128ep-16, -0x1.d83dacec5ea6bp-21},
{0x1.1feb8d12676d7p0, -0x1.7898347284afep-2, 0x1.aba3466b34451p-4,
-0x1.663adc573e2f9p-6, 0x1.ae99fb17c3e08p-9, -0x1.602f950ad5535p-12,
0x1.5e9717490609dp-16, -0x1.3fca107bbc8d5p-21},
{0x1.1f12fe3c536fap0, -0x1.72b1d1f22e6d3p-2, 0x1.99fc0eed4a896p-4,
-0x1.48db0a87bd8c6p-6, 0x1.73e368895aa61p-9, -0x1.19b35d5301fc8p-12,
0x1.007987e4bb033p-16, -0x1.a7edcd4c2dc7p-22},
{0x1.1db7b0df84d5dp0, -0x1.6a4e4a41cde02p-2, 0x1.83bbded16455dp-4,
-0x1.2809b3b36977ep-6, 0x1.39c08bab44679p-9, -0x1.b7b45a70ed119p-13,
0x1.6e99b36410e7bp-17, -0x1.13619bb7ebc0cp-22},
{0x1.1bb1c85c4a527p0, -0x1.5f23b99a249a3p-2, 0x1.694c91fa0d12cp-4,
-0x1.053e1ce11c72dp-6, 0x1.02bf72c50ea78p-9, -0x1.4f478fb56cb02p-13,
0x1.005f80ecbe213p-17, -0x1.5f2446bde7f5bp-23},
{0x1.18dec3bd51f9dp0, -0x1.5123f58346186p-2, 0x1.4b8a1ca536ab4p-4,
-0x1.c4243015cc723p-7, 0x1.a1a8a01d351efp-10, -0x1.f466b34f1d86bp-14,
0x1.5f835eea0bf6ap-18, -0x1.b83165b939234p-24},
{0x1.152804c3369f4p0, -0x1.4084cd4afd4bcp-2, 0x1.2ba2e836e47aap-4,
-0x1.800f2dfc6904bp-7, 0x1.4a6daf0669c59p-10, -0x1.6e326ab872317p-14,
0x1.d9761a6a755a5p-19, -0x1.0fca33f9dd4b5p-24},
{0x1.1087ad68356aap0, -0x1.2dbb044707459p-2, 0x1.0aea8ceaa0384p-4,
-0x1.40b516d52b3d2p-7, 0x1.00c9e05f01d22p-10, -0x1.076afb0dc0ff7p-14,
0x1.39fadec400657p-19, -0x1.4b5761352e7e3p-25},
{0x1.0b0a7a8ba4a22p0, -0x1.196990d22d4a1p-2, 0x1.d5551e6ac0c4dp-5,
-0x1.07cce1770bd1ap-7, 0x1.890347b8848bfp-11, -0x1.757ec96750b6ap-15,
0x1.9b258a1e06bcep-20, -0x1.8fc6d22da7572p-26},
{0x1.04ce2be70fb47p0, -0x1.0449e4b0b9cacp-2, 0x1.97f7424f4b0e7p-5,
-0x1.ac825439c42f4p-8, 0x1.28f5f65426dfbp-11, -0x1.05b699a90f90fp-15,
0x1.0a888eecf4593p-20, -0x1.deace2b32bb31p-27},
{0x1.fbf9fb0e11cc8p-1, -0x1.de2640856545ap-3, 0x1.5f5b1f47f851p-5,
-0x1.588bc71eb41b9p-8, 0x1.bc6a0a772f56dp-12, -0x1.6b9fad1f1657ap-16,
0x1.573204ba66504p-21, -0x1.1d38065c94e44p-27},
{0x1.ed8f18c99e031p-1, -0x1.b4cb6acd903b4p-3, 0x1.2c7f3dddd6fc1p-5,
-0x1.13052067df4ep-8, 0x1.4a5027444082fp-12, -0x1.f672bab0e2554p-17,
0x1.b83c756348cc9p-22, -0x1.534f1a1079499p-28},
{0x1.debd33044166dp-1, -0x1.8d7cd9053f7d8p-3, 0x1.ff9957fb3d6e7p-6,
-0x1.b50be55de0f36p-9, 0x1.e92c8ec53a628p-13, -0x1.5a4b88d508007p-17,
0x1.1a27737559e26p-22, -0x1.942ae62cb2c14p-29},
{0x1.cfdbf0386f3bdp-1, -0x1.68e33d93b0dc4p-3, 0x1.b2683d58f53dep-6,
-0x1.5a9174e70d26fp-9, 0x1.69ddd326d49cdp-13, -0x1.dd8f397a8219cp-18,
0x1.6a755016ad4ddp-23, -0x1.e366e0139187dp-30},
{0x1.c132adb8d7464p-1, -0x1.475a899f61b46p-3, 0x1.70a431397a77cp-6,
-0x1.12e3d35beeee2p-9, 0x1.0c16b05738333p-13, -0x1.4a47f873e144ep-18,
0x1.d3d494c698c02p-24, -0x1.2302c59547fe5p-30},
{0x1.b2f5fd05555e7p-1, -0x1.28feefbe03ec7p-3, 0x1.3923acbb3a676p-6,
-0x1.b4ff793cd6358p-10, 0x1.8ea0eb8c913bcp-14, -0x1.cb31ec2baceb1p-19,
0x1.30011e7e80c04p-24, -0x1.617710635cb1dp-31},
{0x1.a54853cd9593ep-1, -0x1.0dbdbaea4dc8ep-3, 0x1.0a93e2c20a0fdp-6,
-0x1.5c969ff401ea8p-10, 0x1.29e0cc64fe627p-14, -0x1.4160d8e9d3c2ap-19,
0x1.8e7b67594624ap-25, -0x1.b1cf2c975b09bp-32},
{0x1.983ceece09ff8p-1, -0x1.eacc78f7a2dp-4, 0x1.c74418410655fp-7,
-0x1.1756a050e441ep-10, 0x1.bff3650f7f548p-15, -0x1.c56c0217d3adap-20,
0x1.07b4918d0b489p-25, -0x1.0d4be8c1c50f8p-32},
};
LLVM_LIBC_FUNCTION(float, erff, (float x)) {
using FPBits = typename fputil::FPBits<float>;
FPBits xbits(x);
uint32_t x_u = xbits.uintval();
uint32_t x_abs = x_u & 0x7fff'ffffU;
if (LIBC_UNLIKELY(x_abs >= 0x4080'0000U)) {
const float ONE[2] = {1.0f, -1.0f};
const float SMALL[2] = {-0x1.0p-25f, 0x1.0p-25f};
int sign = xbits.is_neg() ? 1 : 0;
if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
if (xbits.is_signaling_nan()) {
fputil::raise_except_if_required(FE_INVALID);
return FPBits::quiet_nan().get_val();
}
return (x_abs > 0x7f80'0000) ? x : ONE[sign];
}
return ONE[sign] + SMALL[sign];
}
#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
// Exceptional mask = common 0 bits of 2 exceptional values.
constexpr uint32_t EXCEPT_MASK = 0x809a'6184U;
if (LIBC_UNLIKELY((x_abs & EXCEPT_MASK) == 0)) {
// Exceptional values
if (LIBC_UNLIKELY(x_abs == 0x3f65'9229U)) // |x| = 0x1.cb2452p-1f
return x < 0.0f ? fputil::round_result_slightly_down(-0x1.972ea8p-1f)
: fputil::round_result_slightly_up(0x1.972ea8p-1f);
if (LIBC_UNLIKELY(x_abs == 0x4004'1e6aU)) // |x| = 0x1.083cd4p+1f
return x < 0.0f ? fputil::round_result_slightly_down(-0x1.fe3462p-1f)
: fputil::round_result_slightly_up(0x1.fe3462p-1f);
if (x_abs == 0U)
return x;
}
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
// Polynomial approximation:
// erf(x) ~ x * (c0 + c1 * x^2 + c2 * x^4 + ... + c7 * x^14)
double xd = static_cast<double>(x);
double xsq = xd * xd;
const uint32_t EIGHT = 3 << FPBits::FRACTION_LEN;
int idx = static_cast<int>(FPBits(x_abs + EIGHT).get_val());
double x4 = xsq * xsq;
double c0 = fputil::multiply_add(xsq, COEFFS[idx][1], COEFFS[idx][0]);
double c1 = fputil::multiply_add(xsq, COEFFS[idx][3], COEFFS[idx][2]);
double c2 = fputil::multiply_add(xsq, COEFFS[idx][5], COEFFS[idx][4]);
double c3 = fputil::multiply_add(xsq, COEFFS[idx][7], COEFFS[idx][6]);
double x8 = x4 * x4;
double p0 = fputil::multiply_add(x4, c1, c0);
double p1 = fputil::multiply_add(x4, c3, c2);
return static_cast<float>(xd * fputil::multiply_add(x8, p1, p0));
}
} // namespace LIBC_NAMESPACE_DECL
|