aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/cbrtf.cpp
blob: 71b23c4a8c742cf6c7f49547a5c5d5236e5730c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//===-- Implementation of cbrtf function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/cbrtf.h"
#include "hdr/fenv_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY

namespace LIBC_NAMESPACE_DECL {

namespace {

// Look up table for 2^(i/3) for i = 0, 1, 2.
constexpr double CBRT2[3] = {1.0, 0x1.428a2f98d728bp0, 0x1.965fea53d6e3dp0};

// Degree-7 polynomials approximation of ((1 + x)^(1/3) - 1)/x for 0 <= x <= 1
// generated by Sollya with:
// > for i from 0 to 15 do {
//     P = fpminimax(((1 + x)^(1/3) - 1)/x, 6, [|D...|], [i/16, (i + 1)/16]);
//     print("{", coeff(P, 0), ",", coeff(P, 1), ",", coeff(P, 2), ",",
//           coeff(P, 3), ",", coeff(P, 4), ",", coeff(P, 5), ",",
//           coeff(P, 6), "},");
// };
// Then (1 + x)^(1/3) ~ 1 + x * P(x).
constexpr double COEFFS[16][7] = {
    {0x1.55555555554ebp-2, -0x1.c71c71c678c0cp-4, 0x1.f9add2776de81p-5,
     -0x1.511e10aa964a7p-5, 0x1.ee44165937fa2p-6, -0x1.7c5c9e059345dp-6,
     0x1.047f75e0aff14p-6},
    {0x1.5555554d1149ap-2, -0x1.c71c676fcb5bp-4, 0x1.f9ab127dc57ebp-5,
     -0x1.50ea8fd1d4c15p-5, 0x1.e9d68f28ced43p-6, -0x1.60e0e1e661311p-6,
     0x1.716eca1d6e3bcp-7},
    {0x1.5555546377d45p-2, -0x1.c71bc1c6d49d2p-4, 0x1.f9924cc0ed24dp-5,
     -0x1.4fea3beb53b3bp-5, 0x1.de028a9a07b1bp-6, -0x1.3b090d2233524p-6,
     0x1.0aeca34893785p-7},
    {0x1.55554dce9f649p-2, -0x1.c7188b34b98f8p-4, 0x1.f93e1af34af49p-5,
     -0x1.4d9a06be75c63p-5, 0x1.cb943f4f68992p-6, -0x1.139a685a5e3c4p-6,
     0x1.88410674c6a5dp-8},
    {0x1.5555347d211c3p-2, -0x1.c70f2a4b1a5fap-4, 0x1.f88420e8602c3p-5,
     -0x1.49becfa4ed3ep-5, 0x1.b475cd9013162p-6, -0x1.dcfee1dd2f8efp-7,
     0x1.249bb51a1c498p-8},
    {0x1.5554f01b33dbap-2, -0x1.c6facb929dbf1p-4, 0x1.f73fb7861252ep-5,
     -0x1.4459a4a0071fap-5, 0x1.9a8df2b504fc2p-6, -0x1.9a7ce3006d06ep-7,
     0x1.ba9230918fa2ep-9},
    {0x1.55545c695db5fp-2, -0x1.c6d6089f20275p-4, 0x1.f556e0ea80efp-5,
     -0x1.3d91372d083f4p-5, 0x1.7f66cff331f4p-6, -0x1.606a562491737p-7,
     0x1.52e3e17c71069p-9},
    {0x1.55534a879232ap-2, -0x1.c69b836998b84p-4, 0x1.f2bb26dac0e4cp-5,
     -0x1.359eed43716d7p-5, 0x1.64218cd824fbcp-6, -0x1.2e703e2e091e8p-7,
     0x1.0677d9af6aad4p-9},
    {0x1.5551836bb5494p-2, -0x1.c64658c15353bp-4, 0x1.ef68517451a6ep-5,
     -0x1.2cc20a980dceep-5, 0x1.49843e0fad93ap-6, -0x1.03c59ccb68e54p-7,
     0x1.9ad325dc7adcbp-10},
    {0x1.554ecacb0d035p-2, -0x1.c5d2664026ffcp-4, 0x1.eb624796ba809p-5,
     -0x1.233803d19a535p-5, 0x1.300decb1c3c28p-6, -0x1.befe18031ec3dp-8,
     0x1.449f5ee175c69p-10},
    {0x1.554ae1f5ae815p-2, -0x1.c53c6b14ff6b2p-4, 0x1.e6b2d5127bb5bp-5,
     -0x1.19387336788a3p-5, 0x1.180955a6ab255p-6, -0x1.81696703ba369p-8,
     0x1.02cb36389bd79p-10},
    {0x1.55458a59f356ep-2, -0x1.c4820dd631ae9p-4, 0x1.e167af818bd15p-5,
     -0x1.0ef35f6f72e52p-5, 0x1.019c33b65e4ebp-6, -0x1.4d25bdd52d3a5p-8,
     0x1.a008ae91f5936p-11},
    {0x1.553e878eafee1p-2, -0x1.c3a1d0b2a3db2p-4, 0x1.db90d8ed9f89bp-5,
     -0x1.0490e20f1ae91p-5, 0x1.d9a5d1fc42fe3p-7, -0x1.20bf8227c2abfp-8,
     0x1.50f8174cdb6e9p-11},
    {0x1.5535a0dedf1b1p-2, -0x1.c29afb8bd01a1p-4, 0x1.d53f6371c1e27p-5,
     -0x1.f463209b433e2p-6, 0x1.b35222a17e44p-7, -0x1.f5efbf505e133p-9,
     0x1.12e0e94e8586dp-11},
    {0x1.552aa25e57bfdp-2, -0x1.c16d811e4acadp-4, 0x1.ce8489b47aa51p-5,
     -0x1.dfde7ff758ea8p-6, 0x1.901f43aac38c8p-7, -0x1.b581d07df5ad5p-9,
     0x1.c3726535f1fc6p-12},
    {0x1.551d5d9b204d3p-2, -0x1.c019e328f8db1p-4, 0x1.c7710f44fc3cep-5,
     -0x1.cbbbe25ea8ba4p-6, 0x1.6fe270088623dp-7, -0x1.7e6fc79733761p-9,
     0x1.75077abf18d84p-12},
};

} // anonymous namespace

LLVM_LIBC_FUNCTION(float, cbrtf, (float x)) {
  using FloatBits = typename fputil::FPBits<float>;
  using DoubleBits = typename fputil::FPBits<double>;

  FloatBits x_bits(x);

  uint32_t x_abs = x_bits.uintval() & 0x7fff'ffff;
  uint32_t sign_bit = (x_bits.uintval() >> 31) << DoubleBits::EXP_LEN;

  if (LIBC_UNLIKELY(x == 0.0f || x_abs >= 0x7f80'0000)) {
    // x is 0, Inf, or NaN.
    // Make sure it works for FTZ/DAZ modes.
    return x + x;
  }

  double xd = static_cast<double>(x);
  DoubleBits xd_bits(xd);

  // When using biased exponent of x in double precision,
  //   x_e = real_exponent_of_x + 1023
  // Then:
  //   x_e / 3 = real_exponent_of_x / 3 + 1023/3
  //           = real_exponent_of_x / 3 + 341
  // So to make it the correct biased exponent of x^(1/3), we add
  //   1023 - 341 = 682
  // to the quotient x_e / 3.
  unsigned x_e = static_cast<unsigned>(xd_bits.get_biased_exponent());
  unsigned out_e = (x_e / 3 + 682) | sign_bit;
  unsigned shift_e = x_e % 3;

  // Set x_m = 2^(x_e % 3) * (1.mantissa)
  uint64_t x_m = xd_bits.get_mantissa();
  // Use the leading 4 bits for look up table
  unsigned idx = static_cast<unsigned>(x_m >> (DoubleBits::FRACTION_LEN - 4));

  x_m |= static_cast<uint64_t>(DoubleBits::EXP_BIAS)
         << DoubleBits::FRACTION_LEN;

  double x_reduced = DoubleBits(x_m).get_val();
  double dx = x_reduced - 1.0;

  double dx_sq = dx * dx;
  double c0 = fputil::multiply_add(dx, COEFFS[idx][0], 1.0);
  double c1 = fputil::multiply_add(dx, COEFFS[idx][2], COEFFS[idx][1]);
  double c2 = fputil::multiply_add(dx, COEFFS[idx][4], COEFFS[idx][3]);
  double c3 = fputil::multiply_add(dx, COEFFS[idx][6], COEFFS[idx][5]);

  double dx_4 = dx_sq * dx_sq;
  double p0 = fputil::multiply_add(dx_sq, c1, c0);
  double p1 = fputil::multiply_add(dx_sq, c3, c2);

  double r = fputil::multiply_add(dx_4, p1, p0) * CBRT2[shift_e];

  uint64_t r_m = DoubleBits(r).get_mantissa();
  // Check if the output is exact.  To be exact, the smallest 1-bit of the
  // output has to be at least 2^-7 or higher.  So we check the lowest 44 bits
  // to see if they are within 2^(-52 + 3) errors from all zeros, then the
  // result cube root is exact.
  if (LIBC_UNLIKELY(((r_m + 8) & 0xfffffffffff) <= 16)) {
    if ((r_m & 0xfffffffffff) <= 8)
      r_m &= 0xffff'ffff'ffff'ffe0;
    else
      r_m = (r_m & 0xffff'ffff'ffff'ffe0) + 0x20;
    fputil::clear_except_if_required(FE_INEXACT);
  }
  // Adjust exponent and sign.
  uint64_t r_bits =
      r_m | (static_cast<uint64_t>(out_e) << DoubleBits::FRACTION_LEN);

  return static_cast<float>(DoubleBits(r_bits).get_val());
}

} // namespace LIBC_NAMESPACE_DECL