aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/cbrt.cpp
blob: ce227e6650c840b8c85d37bcbc53a0e70d5b99fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
//===-- Implementation of cbrt function -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/cbrt.h"
#include "hdr/fenv_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/common.h"
#include "src/__support/integer_literals.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY

#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
#define LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
#endif

namespace LIBC_NAMESPACE_DECL {

using DoubleDouble = fputil::DoubleDouble;
using Float128 = fputil::DyadicFloat<128>;

namespace {

// Initial approximation of x^(-2/3) for 1 <= x < 2.
// Polynomial generated by Sollya with:
// > P = fpminimax(x^(-2/3), 7, [|D...|], [1, 2]);
// > dirtyinfnorm(P/x^(-2/3) - 1, [1, 2]);
// 0x1.28...p-21
double intial_approximation(double x) {
  constexpr double COEFFS[8] = {
      0x1.bc52aedead5c6p1,  -0x1.b52bfebf110b3p2,  0x1.1d8d71d53d126p3,
      -0x1.de2db9e81cf87p2, 0x1.0154ca06153bdp2,   -0x1.5973c66ee6da7p0,
      0x1.07bf6ac832552p-2, -0x1.5e53d9ce41cb8p-6,
  };

  double x_sq = x * x;

  double c0 = fputil::multiply_add(x, COEFFS[1], COEFFS[0]);
  double c1 = fputil::multiply_add(x, COEFFS[3], COEFFS[2]);
  double c2 = fputil::multiply_add(x, COEFFS[5], COEFFS[4]);
  double c3 = fputil::multiply_add(x, COEFFS[7], COEFFS[6]);

  double x_4 = x_sq * x_sq;
  double d0 = fputil::multiply_add(x_sq, c1, c0);
  double d1 = fputil::multiply_add(x_sq, c3, c2);

  return fputil::multiply_add(x_4, d1, d0);
}

// Get the error term for Newton iteration:
//   h(x) = x^3 * a^2 - 1,
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) {
  return fputil::multiply_add(x_3.hi, a_sq.hi, -1.0) +
         fputil::multiply_add(x_3.lo, a_sq.hi, x_3.hi * a_sq.lo);
}
#else
double get_error(const DoubleDouble &x_3, const DoubleDouble &a_sq) {
  DoubleDouble x_3_a_sq = fputil::quick_mult(a_sq, x_3);
  return (x_3_a_sq.hi - 1.0) + x_3_a_sq.lo;
}
#endif

} // anonymous namespace

// Correctly rounded cbrt algorithm:
//
// === Step 1 - Range reduction ===
// For x = (-1)^s * 2^e * (1.m), we get 2 reduced arguments x_r and a as:
//   x_r = 1.m
//   a   = (-1)^s * 2^(e % 3) * (1.m)
// Then cbrt(x) = x^(1/3) can be computed as:
//   x^(1/3) = 2^(e / 3) * a^(1/3).
//
// In order to avoid division, we compute a^(-2/3) using Newton method and then
// multiply the results by a:
//   a^(1/3) = a * a^(-2/3).
//
// === Step 2 - First approximation to a^(-2/3) ===
// First, we use a degree-7 minimax polynomial generated by Sollya to
// approximate x_r^(-2/3) for 1 <= x_r < 2.
//   p = P(x_r) ~ x_r^(-2/3),
// with relative errors bounded by:
//   | p / x_r^(-2/3) - 1 | < 1.16 * 2^-21.
//
// Then we multiply with 2^(e % 3) from a small lookup table to get:
//   x_0 = 2^(-2*(e % 3)/3) * p
//       ~ 2^(-2*(e % 3)/3) * x_r^(-2/3)
//       = a^(-2/3)
// With relative errors:
//   | x_0 / a^(-2/3) - 1 | < 1.16 * 2^-21.
// This step is done in double precision.
//
// === Step 3 - First Newton iteration ===
// We follow the method described in:
//   Sibidanov, A. and Zimmermann, P., "Correctly rounded cubic root evaluation
//   in double precision", https://core-math.gitlabpages.inria.fr/cbrt64.pdf
// to derive multiplicative Newton iterations as below:
// Let x_n be the nth approximation to a^(-2/3).  Define the n^th error as:
//   h_n = x_n^3 * a^2 - 1
// Then:
//   a^(-2/3) = x_n / (1 + h_n)^(1/3)
//            = x_n * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3 + ...)
// using the Taylor series expansion of (1 + h_n)^(-1/3).
//
// Apply to x_0 above:
//   h_0 = x_0^3 * a^2 - 1
//       = a^2 * (x_0 - a^(-2/3)) * (x_0^2 + x_0 * a^(-2/3) + a^(-4/3)),
// it's bounded by:
//   |h_0| < 4 * 3 * 1.16 * 2^-21 * 4 < 2^-17.
// So in the first iteration step, we use:
//   x_1 = x_0 * (1 - (1/3) * h_n + (2/9) * h_n^2 - (14/81) * h_n^3)
// Its relative error is bounded by:
//   | x_1 / a^(-2/3) - 1 | < 35/242 * |h_0|^4 < 2^-70.
// Then we perform Ziv's rounding test and check if the answer is exact.
// This step is done in double-double precision.
//
// === Step 4 - Second Newton iteration ===
// If the Ziv's rounding test from the previous step fails, we define the error
// term:
//   h_1 = x_1^3 * a^2 - 1,
// And perform another iteration:
//   x_2 = x_1 * (1 - h_1 / 3)
// with the relative errors exceed the precision of double-double.
// We then check the Ziv's accuracy test with relative errors < 2^-102 to
// compensate for rounding errors.
//
// === Step 5 - Final iteration ===
// If the Ziv's accuracy test from the previous step fails, we perform another
// iteration in 128-bit precision and check for exact outputs.
//
// TODO: It is possible to replace this costly computation step with special
// exceptional handling, similar to what was done in the CORE-MATH project:
// https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/cbrt/cbrt.c

LLVM_LIBC_FUNCTION(double, cbrt, (double x)) {
  using FPBits = fputil::FPBits<double>;

  uint64_t x_abs = FPBits(x).abs().uintval();

  unsigned exp_bias_correction = 682; // 1023 * 2/3

  if (LIBC_UNLIKELY(x_abs < FPBits::min_normal().uintval() ||
                    x_abs >= FPBits::inf().uintval())) {
    if (x == 0.0 || x_abs >= FPBits::inf().uintval())
      // x is 0, Inf, or NaN.
      // Make sure it works for FTZ/DAZ modes.
      return static_cast<double>(x + x);

    // x is non-zero denormal number.
    // Normalize x.
    x *= 0x1.0p60;
    exp_bias_correction -= 20;
  }

  FPBits x_bits(x);

  // When using biased exponent of x in double precision,
  //   x_e = real_exponent_of_x + 1023
  // Then:
  //   x_e / 3 = real_exponent_of_x / 3 + 1023/3
  //           = real_exponent_of_x / 3 + 341
  // So to make it the correct biased exponent of x^(1/3), we add
  //   1023 - 341 = 682
  // to the quotient x_e / 3.
  unsigned x_e = static_cast<unsigned>(x_bits.get_biased_exponent());
  unsigned out_e = (x_e / 3 + exp_bias_correction);
  unsigned shift_e = x_e % 3;

  // Set x_r = 1.mantissa
  double x_r =
      FPBits(x_bits.get_mantissa() |
             (static_cast<uint64_t>(FPBits::EXP_BIAS) << FPBits::FRACTION_LEN))
          .get_val();

  // Set a = (-1)^x_sign * 2^(x_e % 3) * (1.mantissa)
  uint64_t a_bits = x_bits.uintval() & 0x800F'FFFF'FFFF'FFFF;
  a_bits |=
      (static_cast<uint64_t>(shift_e + static_cast<unsigned>(FPBits::EXP_BIAS))
       << FPBits::FRACTION_LEN);
  double a = FPBits(a_bits).get_val();

  // Initial approximation of x_r^(-2/3).
  double p = intial_approximation(x_r);

  // Look up for 2^(-2*n/3) used for first approximation step.
  constexpr double EXP2_M2_OVER_3[3] = {1.0, 0x1.428a2f98d728bp-1,
                                        0x1.965fea53d6e3dp-2};

  // x0 is an initial approximation of a^(-2/3) for 1 <= |a| < 8.
  // Relative error: < 1.16 * 2^(-21).
  double x0 = static_cast<double>(EXP2_M2_OVER_3[shift_e] * p);

  // First iteration in double precision.
  DoubleDouble a_sq = fputil::exact_mult(a, a);

  // h0 = x0^3 * a^2 - 1
  DoubleDouble x0_sq = fputil::exact_mult(x0, x0);
  DoubleDouble x0_3 = fputil::quick_mult(x0, x0_sq);

  double h0 = get_error(x0_3, a_sq);

#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
  constexpr double REL_ERROR = 0;
#else
  constexpr double REL_ERROR = 0x1.0p-51;
#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS

  // Taylor polynomial of (1 + h)^(-1/3):
  //   (1 + h)^(-1/3) = 1 - h/3 + 2 h^2 / 9 - 14 h^3 / 81 + ...
  constexpr double ERR_COEFFS[3] = {
      -0x1.5555555555555p-2 - REL_ERROR, // -1/3 - relative_error
      0x1.c71c71c71c71cp-3,              // 2/9
      -0x1.61f9add3c0ca4p-3,             // -14/81
  };
  // e0 = -14 * h^2 / 81 + 2 * h / 9 - 1/3 - relative_error.
  double e0 = fputil::polyeval(h0, ERR_COEFFS[0], ERR_COEFFS[1], ERR_COEFFS[2]);
  double x0_h0 = x0 * h0;

  // x1 = x0 (1 - h0/3 + 2 h0^2 / 9 - 14 h0^3 / 81)
  // x1 approximate a^(-2/3) with relative errors bounded by:
  //   | x1 / a^(-2/3) - 1 | < (34/243) h0^4 < h0 * REL_ERROR
  DoubleDouble x1_dd{x0_h0 * e0, x0};

  // r1 = x1 * a ~ a^(-2/3) * a = a^(1/3).
  DoubleDouble r1 = fputil::quick_mult(a, x1_dd);

  // Lambda function to update the exponent of the result.
  auto update_exponent = [=](double r) -> double {
    uint64_t r_m = FPBits(r).uintval() - 0x3FF0'0000'0000'0000;
    // Adjust exponent and sign.
    uint64_t r_bits =
        r_m + (static_cast<uint64_t>(out_e) << FPBits::FRACTION_LEN);
    return FPBits(r_bits).get_val();
  };

#ifdef LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
  // TODO: We probably don't need to use double-double if accurate tests and
  // passes are skipped.
  return update_exponent(r1.hi + r1.lo);
#else
  // Accurate checks and passes.
  double r1_lower = r1.hi + r1.lo;
  double r1_upper =
      r1.hi + fputil::multiply_add(x0_h0, 2.0 * REL_ERROR * a, r1.lo);

  // Ziv's accuracy test.
  if (LIBC_LIKELY(r1_upper == r1_lower)) {
    // Test for exact outputs.
    // Check if lower (52 - 17 = 35) bits are 0's.
    if (LIBC_UNLIKELY((FPBits(r1_lower).uintval() & 0x0000'0007'FFFF'FFFF) ==
                      0)) {
      double r1_err = (r1_lower - r1.hi) - r1.lo;
      if (FPBits(r1_err).abs().get_val() < 0x1.0p69)
        fputil::clear_except_if_required(FE_INEXACT);
    }

    return update_exponent(r1_lower);
  }

  // Accuracy test failed, perform another Newton iteration.
  double x1 = x1_dd.hi + (e0 + REL_ERROR) * x0_h0;

  // Second iteration in double-double precision.
  // h1 = x1^3 * a^2 - 1.
  DoubleDouble x1_sq = fputil::exact_mult(x1, x1);
  DoubleDouble x1_3 = fputil::quick_mult(x1, x1_sq);
  double h1 = get_error(x1_3, a_sq);

  // e1 = -x1*h1/3.
  double e1 = h1 * (x1 * -0x1.5555555555555p-2);
  // x2 = x1*(1 - h1/3) = x1 + e1 ~ a^(-2/3) with relative errors < 2^-101.
  DoubleDouble x2 = fputil::exact_add(x1, e1);
  // r2 = a * x2 ~ a * a^(-2/3) = a^(1/3) with relative errors < 2^-100.
  DoubleDouble r2 = fputil::quick_mult(a, x2);

  double r2_upper = r2.hi + fputil::multiply_add(a, 0x1.0p-102, r2.lo);
  double r2_lower = r2.hi + fputil::multiply_add(a, -0x1.0p-102, r2.lo);

  // Ziv's accuracy test.
  if (LIBC_LIKELY(r2_upper == r2_lower))
    return update_exponent(r2_upper);

  // TODO: Investigate removing float128 and just list exceptional cases.
  // Apply another Newton iteration with ~126-bit accuracy.
  Float128 x2_f128 = fputil::quick_add(Float128(x2.hi), Float128(x2.lo));
  // x2^3
  Float128 x2_3 =
      fputil::quick_mul(fputil::quick_mul(x2_f128, x2_f128), x2_f128);
  // a^2
  Float128 a_sq_f128 = fputil::quick_mul(Float128(a), Float128(a));
  // x2^3 * a^2
  Float128 x2_3_a_sq = fputil::quick_mul(x2_3, a_sq_f128);
  // h2 = x2^3 * a^2 - 1
  Float128 h2_f128 = fputil::quick_add(x2_3_a_sq, Float128(-1.0));
  double h2 = static_cast<double>(h2_f128);
  // t2 = 1 - h2 / 3
  Float128 t2 =
      fputil::quick_add(Float128(1.0), Float128(h2 * (-0x1.5555555555555p-2)));
  // x3 = x2 * (1 - h2 / 3) ~ a^(-2/3)
  Float128 x3 = fputil::quick_mul(x2_f128, t2);
  // r3 = a * x3 ~ a * a^(-2/3) = a^(1/3)
  Float128 r3 = fputil::quick_mul(Float128(a), x3);

  // Check for exact cases:
  Float128::MantissaType rounding_bits =
      r3.mantissa & 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFFF_u128;

  double result = static_cast<double>(r3);
  if ((rounding_bits < 0x0000'0000'0000'0000'0000'0000'0000'000F_u128) ||
      (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128)) {
    // Output is exact.
    r3.mantissa &= 0xFFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFFF'FFF0_u128;

    if (rounding_bits >= 0x0000'0000'0000'03FF'FFFF'FFFF'FFFF'FFF0_u128) {
      Float128 tmp{r3.sign, r3.exponent - 123,
                   0x8000'0000'0000'0000'0000'0000'0000'0000_u128};
      Float128 r4 = fputil::quick_add(r3, tmp);
      result = static_cast<double>(r4);
    } else {
      result = static_cast<double>(r3);
    }

    fputil::clear_except_if_required(FE_INEXACT);
  }

  return update_exponent(result);
#endif // LIBC_MATH_CBRT_SKIP_ACCURATE_PASS
}

} // namespace LIBC_NAMESPACE_DECL