aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/atan2f.cpp
blob: b79410dbf66ee6e601d4ae7f770b7c949a883f21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//===-- Single-precision atan2f function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/atan2f.h"
#include "inv_trigf_utils.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY

namespace LIBC_NAMESPACE {

namespace {

// Look up tables for accurate pass:

// atan(i/16) with i = 0..16, generated by Sollya with:
// > for i from 0 to 16 do {
//     a = round(atan(i/16), D, RN);
//     b = round(atan(i/16) - a, D, RN);
//     print("{", b, ",", a, "},");
//   };
constexpr fputil::DoubleDouble ATAN_I[17] = {
    {0.0, 0.0},
    {-0x1.c934d86d23f1dp-60, 0x1.ff55bb72cfdeap-5},
    {-0x1.cd37686760c17p-59, 0x1.fd5ba9aac2f6ep-4},
    {0x1.347b0b4f881cap-58, 0x1.7b97b4bce5b02p-3},
    {0x1.8ab6e3cf7afbdp-57, 0x1.f5b75f92c80ddp-3},
    {-0x1.963a544b672d8p-57, 0x1.362773707ebccp-2},
    {-0x1.c63aae6f6e918p-56, 0x1.6f61941e4def1p-2},
    {-0x1.24dec1b50b7ffp-56, 0x1.a64eec3cc23fdp-2},
    {0x1.a2b7f222f65e2p-56, 0x1.dac670561bb4fp-2},
    {-0x1.d5b495f6349e6p-56, 0x1.0657e94db30dp-1},
    {-0x1.928df287a668fp-58, 0x1.1e00babdefeb4p-1},
    {0x1.1021137c71102p-55, 0x1.345f01cce37bbp-1},
    {0x1.2419a87f2a458p-56, 0x1.4978fa3269ee1p-1},
    {0x1.0028e4bc5e7cap-57, 0x1.5d58987169b18p-1},
    {-0x1.8c34d25aadef6p-56, 0x1.700a7c5784634p-1},
    {-0x1.bf76229d3b917p-56, 0x1.819d0b7158a4dp-1},
    {0x1.1a62633145c07p-55, 0x1.921fb54442d18p-1},
};

// Taylor polynomial, generated by Sollya with:
// > for i from 0 to 8 do {
//     j = (-1)^(i + 1)/(2*i + 1);
//     a = round(j, D, RN);
//     b = round(j - a, D, RN);
//     print("{", b, ",", a, "},");
//   };
constexpr fputil::DoubleDouble COEFFS[9] = {
    {0.0, 1.0},                                      // 1
    {-0x1.5555555555555p-56, -0x1.5555555555555p-2}, // -1/3
    {-0x1.999999999999ap-57, 0x1.999999999999ap-3},  // 1/5
    {-0x1.2492492492492p-57, -0x1.2492492492492p-3}, // -1/7
    {0x1.c71c71c71c71cp-58, 0x1.c71c71c71c71cp-4},   // 1/9
    {0x1.745d1745d1746p-59, -0x1.745d1745d1746p-4},  // -1/11
    {-0x1.3b13b13b13b14p-58, 0x1.3b13b13b13b14p-4},  // 1/13
    {-0x1.1111111111111p-60, -0x1.1111111111111p-4}, // -1/15
    {0x1.e1e1e1e1e1e1ep-61, 0x1.e1e1e1e1e1e1ep-5},   // 1/17
};

// Veltkamp's splitting of a double precision into hi + lo, where the hi part is
// slightly smaller than an even split, so that the product of
//   hi * (s1 * k + s2) is exact,
// where:
//   s1, s2 are single precsion,
//   1/16 <= s1/s2 <= 1
//   1/16 <= k <= 1 is an integer.
// So the maximal precision of (s1 * k + s2) is:
//   prec(s1 * k + s2) = 2 + log2(msb(s2)) - log2(lsb(k_d * s1))
//                     = 2 + log2(msb(s1)) + 4 - log2(lsb(k_d)) - log2(lsb(s1))
//                     = 2 + log2(lsb(s1)) + 23 + 4 - (-4) - log2(lsb(s1))
//                     = 33.
// Thus, the Veltkamp splitting constant is C = 2^33 + 1.
// This is used when FMA instruction is not available.
[[maybe_unused]] constexpr fputil::DoubleDouble split_d(double a) {
  fputil::DoubleDouble r{0.0, 0.0};
  constexpr double C = 0x1.0p33 + 1.0;
  double t1 = C * a;
  double t2 = a - t1;
  r.hi = t1 + t2;
  r.lo = a - r.hi;
  return r;
}

// Compute atan( num_d / den_d ) in double-double precision.
//   num_d      = min(|x|, |y|)
//   den_d      = max(|x|, |y|)
//   q_d        = num_d / den_d
//   idx, k_d   = round( 2^4 * num_d / den_d )
//   final_sign = sign of the final result
//   const_term = the constant term in the final expression.
float atan2f_double_double(double num_d, double den_d, double q_d, int idx,
                           double k_d, double final_sign,
                           const fputil::DoubleDouble &const_term) {
  fputil::DoubleDouble q;
  double num_r, den_r;

  if (idx != 0) {
    // The following range reduction is accurate even without fma for
    //   1/16 <= n/d <= 1.
    // atan(n/d) - atan(idx/16) = atan((n/d - idx/16) / (1 + (n/d) * (idx/16)))
    //                          = atan((n - d*(idx/16)) / (d + n*idx/16))
    k_d *= 0x1.0p-4;
    num_r = fputil::multiply_add(k_d, -den_d, num_d); // Exact
    den_r = fputil::multiply_add(k_d, num_d, den_d);  // Exact
    q.hi = num_r / den_r;
  } else {
    // For 0 < n/d < 1/16, we just need to calculate the lower part of their
    // quotient.
    q.hi = q_d;
    num_r = num_d;
    den_r = den_d;
  }
#ifdef LIBC_TARGET_CPU_HAS_FMA
  q.lo = fputil::multiply_add(q.hi, -den_r, num_r) / den_r;
#else
  // Compute `(num_r - q.hi * den_r) / den_r` accurately without FMA
  // instructions.
  fputil::DoubleDouble q_hi_dd = split_d(q.hi);
  double t1 = fputil::multiply_add(q_hi_dd.hi, -den_r, num_r); // Exact
  double t2 = fputil::multiply_add(q_hi_dd.lo, -den_r, t1);
  q.lo = t2 / den_r;
#endif // LIBC_TARGET_CPU_HAS_FMA

  // Taylor polynomial, evaluating using Horner's scheme:
  //   P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
  //       + x^17/17
  //     = x*(1 + x^2*(-1/3 + x^2*(1/5 + x^2*(-1/7 + x^2*(1/9 + x^2*
  //          *(-1/11 + x^2*(1/13 + x^2*(-1/15 + x^2 * 1/17))))))))
  fputil::DoubleDouble q2 = fputil::quick_mult(q, q);
  fputil::DoubleDouble p_dd =
      fputil::polyeval(q2, COEFFS[0], COEFFS[1], COEFFS[2], COEFFS[3],
                       COEFFS[4], COEFFS[5], COEFFS[6], COEFFS[7], COEFFS[8]);
  fputil::DoubleDouble r_dd =
      fputil::add(const_term, fputil::multiply_add(q, p_dd, ATAN_I[idx]));
  r_dd.hi *= final_sign;
  r_dd.lo *= final_sign;

  // Make sure the sum is normalized:
  fputil::DoubleDouble rr = fputil::exact_add(r_dd.hi, r_dd.lo);
  // Round to odd.
  uint64_t rr_bits = cpp::bit_cast<uint64_t>(rr.hi);
  if (LIBC_UNLIKELY(((rr_bits & 0xfff'ffff) == 0) && (rr.lo != 0.0))) {
    Sign hi_sign = fputil::FPBits<double>(rr.hi).sign();
    Sign lo_sign = fputil::FPBits<double>(rr.lo).sign();
    if (hi_sign == lo_sign) {
      ++rr_bits;
    } else if ((rr_bits & fputil::FPBits<double>::FRACTION_MASK) > 0) {
      --rr_bits;
    }
  }

  return static_cast<float>(cpp::bit_cast<double>(rr_bits));
}

} // anonymous namespace

// There are several range reduction steps we can take for atan2(y, x) as
// follow:

// * Range reduction 1: signness
// atan2(y, x) will return a number between -PI and PI representing the angle
// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
// In particular, we have that:
//   atan2(y, x) = atan( y/x )         if x >= 0 and y >= 0 (I-quadrant)
//               = pi + atan( y/x )    if x < 0 and y >= 0  (II-quadrant)
//               = -pi + atan( y/x )   if x < 0 and y < 0   (III-quadrant)
//               = atan( y/x )         if x >= 0 and y < 0  (IV-quadrant)
// Since atan function is odd, we can use the formula:
//   atan(-u) = -atan(u)
// to adjust the above conditions a bit further:
//   atan2(y, x) = atan( |y|/|x| )         if x >= 0 and y >= 0 (I-quadrant)
//               = pi - atan( |y|/|x| )    if x < 0 and y >= 0  (II-quadrant)
//               = -pi + atan( |y|/|x| )   if x < 0 and y < 0   (III-quadrant)
//               = -atan( |y|/|x| )        if x >= 0 and y < 0  (IV-quadrant)
// Which can be simplified to:
//   atan2(y, x) = sign(y) * atan( |y|/|x| )             if x >= 0
//               = sign(y) * (pi - atan( |y|/|x| ))      if x < 0

// * Range reduction 2: reciprocal
// Now that the argument inside atan is positive, we can use the formula:
//   atan(1/x) = pi/2 - atan(x)
// to make the argument inside atan <= 1 as follow:
//   atan2(y, x) = sign(y) * atan( |y|/|x|)            if 0 <= |y| <= x
//               = sign(y) * (pi/2 - atan( |x|/|y| )   if 0 <= x < |y|
//               = sign(y) * (pi - atan( |y|/|x| ))    if 0 <= |y| <= -x
//               = sign(y) * (pi/2 + atan( |x|/|y| ))  if 0 <= -x < |y|

// * Range reduction 3: look up table.
// After the previous two range reduction steps, we reduce the problem to
// compute atan(u) with 0 <= u <= 1, or to be precise:
//   atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
// An accurate polynomial approximation for the whole [0, 1] input range will
// require a very large degree.  To make it more efficient, we reduce the input
// range further by finding an integer idx such that:
//   | n/d - idx/16 | <= 1/32.
// In particular,
//   idx := 2^-4 * round(2^4 * n/d)
// Then for the fast pass, we find a polynomial approximation for:
//   atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16)
// For the accurate pass, we use the addition formula:
//   atan( n/d ) - atan( idx/16 ) = atan( (n/d - idx/16)/(1 + (n*idx)/(16*d)) )
//                                = atan( (n - d * idx/16)/(d + n * idx/16) )
// And finally we use Taylor polynomial to compute the RHS in the accurate pass:
//   atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9 - u^11/11 + u^13/13 -
//                      - u^15/15 + u^17/17
// It's error in double-double precision is estimated in Sollya to be:
// > P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
//       + x^17/17;
// > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]);
// 0x1.aec6f...p-100
// which is about rounding errors of double-double (2^-104).

LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) {
  using FPBits = typename fputil::FPBits<float>;
  constexpr double IS_NEG[2] = {1.0, -1.0};
  constexpr double PI = 0x1.921fb54442d18p1;
  constexpr double PI_LO = 0x1.1a62633145c07p-53;
  constexpr double PI_OVER_4 = 0x1.921fb54442d18p-1;
  constexpr double PI_OVER_2 = 0x1.921fb54442d18p0;
  constexpr double THREE_PI_OVER_4 = 0x1.2d97c7f3321d2p+1;
  // Adjustment for constant term:
  //   CONST_ADJ[x_sign][y_sign][recip]
  constexpr fputil::DoubleDouble CONST_ADJ[2][2][2] = {
      {{{0.0, 0.0}, {-PI_LO / 2, -PI_OVER_2}},
       {{-0.0, -0.0}, {-PI_LO / 2, -PI_OVER_2}}},
      {{{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}},
       {{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}}}};

  FPBits x_bits(x), y_bits(y);
  bool x_sign = x_bits.sign().is_neg();
  bool y_sign = y_bits.sign().is_neg();
  x_bits.set_sign(Sign::POS);
  y_bits.set_sign(Sign::POS);
  uint32_t x_abs = x_bits.uintval();
  uint32_t y_abs = y_bits.uintval();
  uint32_t max_abs = x_abs > y_abs ? x_abs : y_abs;
  uint32_t min_abs = x_abs <= y_abs ? x_abs : y_abs;

  if (LIBC_UNLIKELY(max_abs >= 0x7f80'0000U || min_abs == 0U)) {
    if (x_bits.is_nan() || y_bits.is_nan())
      return FPBits::quiet_nan().get_val();
    size_t x_except = x_abs == 0 ? 0 : (x_abs == 0x7f80'0000 ? 2 : 1);
    size_t y_except = y_abs == 0 ? 0 : (y_abs == 0x7f80'0000 ? 2 : 1);

    // Exceptional cases:
    //   EXCEPT[y_except][x_except][x_is_neg]
    // with x_except & y_except:
    //   0: zero
    //   1: finite, non-zero
    //   2: infinity
    constexpr double EXCEPTS[3][3][2] = {
        {{0.0, PI}, {0.0, PI}, {0.0, PI}},
        {{PI_OVER_2, PI_OVER_2}, {0.0, 0.0}, {0.0, PI}},
        {{PI_OVER_2, PI_OVER_2},
         {PI_OVER_2, PI_OVER_2},
         {PI_OVER_4, THREE_PI_OVER_4}},
    };

    double r = IS_NEG[y_sign] * EXCEPTS[y_except][x_except][x_sign];

    return static_cast<float>(r);
  }

  bool recip = x_abs < y_abs;
  double final_sign = IS_NEG[(x_sign != y_sign) != recip];
  fputil::DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
  double num_d = static_cast<double>(FPBits(min_abs).get_val());
  double den_d = static_cast<double>(FPBits(max_abs).get_val());
  double q_d = num_d / den_d;

  double k_d = fputil::nearest_integer(q_d * 0x1.0p4f);
  int idx = static_cast<int>(k_d);
  q_d = fputil::multiply_add(k_d, -0x1.0p-4, q_d);

  double p = atan_eval(q_d, idx);
  double r = final_sign *
             fputil::multiply_add(q_d, p, const_term.hi + ATAN_COEFFS[idx][0]);

  constexpr uint32_t LOWER_ERR = 4;
  // Mask sticky bits in double precision before rounding to single precision.
  constexpr uint32_t MASK =
      mask_trailing_ones<uint32_t, fputil::FPBits<double>::SIG_LEN -
                                       FPBits::SIG_LEN - 1>();
  constexpr uint32_t UPPER_ERR = MASK - LOWER_ERR;

  uint32_t r_bits = static_cast<uint32_t>(cpp::bit_cast<uint64_t>(r)) & MASK;

  // Ziv's rounding test.
  if (LIBC_LIKELY(r_bits > LOWER_ERR && r_bits < UPPER_ERR))
    return static_cast<float>(r);

  return atan2f_double_double(num_d, den_d, q_d, idx, k_d, final_sign,
                              const_term);
}

} // namespace LIBC_NAMESPACE