aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/acospif16.cpp
blob: bfdf1694e3ba6a74118c45ec61577cd146c6e0d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//===-- Half-precision acospi function ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception.
//
//===----------------------------------------------------------------------===//

#include "src/math/acospif16.h"
#include "hdr/errno_macros.h"
#include "hdr/fenv_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/cast.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/sqrt.h"
#include "src/__support/macros/optimization.h"

namespace LIBC_NAMESPACE_DECL {

LLVM_LIBC_FUNCTION(float16, acospif16, (float16 x)) {
  using FPBits = fputil::FPBits<float16>;
  FPBits xbits(x);

  uint16_t x_u = xbits.uintval();
  uint16_t x_abs = x_u & 0x7fff;
  uint16_t x_sign = x_u >> 15;

  // |x| > 0x1p0, |x| > 1, or x is NaN.
  if (LIBC_UNLIKELY(x_abs > 0x3c00)) {
    // acospif16(NaN) = NaN
    if (xbits.is_nan()) {
      if (xbits.is_signaling_nan()) {
        fputil::raise_except_if_required(FE_INVALID);
        return FPBits::quiet_nan().get_val();
      }

      return x;
    }

    // 1 < |x| <= +inf
    fputil::raise_except_if_required(FE_INVALID);
    fputil::set_errno_if_required(EDOM);

    return FPBits::quiet_nan().get_val();
  }

  // |x| == 0x1p0, x is 1 or -1
  // if x is (-)1, return 1
  // if x is (+)1, return 0
  if (LIBC_UNLIKELY(x_abs == 0x3c00))
    return fputil::cast<float16>(x_sign ? 1.0f : 0.0f);

  float xf = x;
  float xsq = xf * xf;

  // Degree-6 minimax polynomial coefficients of asin(x) generated by Sollya
  // with: > P = fpminimax(asin(x)/(pi * x), [|0, 2, 4, 6, 8|], [|SG...|], [0,
  // 0.5]);
  constexpr float POLY_COEFFS[5] = {0x1.45f308p-2f, 0x1.b2900cp-5f,
                                    0x1.897e36p-6f, 0x1.9efafcp-7f,
                                    0x1.06d884p-6f};
  // |x| <= 0x1p-1, |x| <= 0.5
  if (x_abs <= 0x3800) {
    // if x is 0, return 0.5
    if (LIBC_UNLIKELY(x_abs == 0))
      return fputil::cast<float16>(0.5f);

    // Note that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x), then
    //            acospi(x) = 0.5 - asin(x)/pi
    float interm =
        fputil::polyeval(xsq, POLY_COEFFS[0], POLY_COEFFS[1], POLY_COEFFS[2],
                         POLY_COEFFS[3], POLY_COEFFS[4]);

    return fputil::cast<float16>(fputil::multiply_add(-xf, interm, 0.5f));
  }

  // When |x| > 0.5, assume that 0.5 < |x| <= 1
  //
  // Step-by-step range-reduction proof:
  // 1:  Let y = asin(x), such that, x = sin(y)
  // 2:  From complimentary angle identity:
  //       x = sin(y) = cos(pi/2 - y)
  // 3:  Let z = pi/2 - y, such that x = cos(z)
  // 4:  From double angle formula; cos(2A) = 1 - 2 * sin^2(A):
  //       z = 2A, z/2 = A
  //       cos(z) = 1 - 2 * sin^2(z/2)
  // 5:  Make sin(z/2) subject of the formula:
  //       sin(z/2) = sqrt((1 - cos(z))/2)
  // 6:  Recall [3]; x = cos(z). Therefore:
  //       sin(z/2) = sqrt((1 - x)/2)
  // 7:  Let u = (1 - x)/2
  // 8:  Therefore:
  //       asin(sqrt(u)) = z/2
  //       2 * asin(sqrt(u)) = z
  // 9:  Recall [3]; z = pi/2 - y. Therefore:
  //       y = pi/2 - z
  //       y = pi/2 - 2 * asin(sqrt(u))
  // 10: Recall [1], y = asin(x). Therefore:
  //       asin(x) = pi/2 - 2 * asin(sqrt(u))
  // 11: Recall that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x)
  //     Therefore:
  //       acos(x) = pi/2 - (pi/2 - 2 * asin(sqrt(u)))
  //       acos(x) = 2 * asin(sqrt(u))
  //       acospi(x) = 2 * (asin(sqrt(u)) / pi)
  //
  // THE RANGE REDUCTION, HOW?
  // 12: Recall [7], u = (1 - x)/2
  // 13: Since 0.5 < x <= 1, therefore:
  //       0 <= u <= 0.25 and 0 <= sqrt(u) <= 0.5
  //
  // Hence, we can reuse the same [0, 0.5] domain polynomial approximation for
  // Step [11] as `sqrt(u)` is in range.
  // When -1 < x <= -0.5, the identity:
  //       acos(x) = pi - acos(-x)
  //       acospi(x) = 1 - acos(-x)/pi
  // allows us to compute for the negative x value (lhs)
  // with a positive x value instead (rhs).

  float xf_abs = (xf < 0 ? -xf : xf);
  float u = fputil::multiply_add(-0.5f, xf_abs, 0.5f);
  float sqrt_u = fputil::sqrt<float>(u);

  float asin_sqrt_u =
      sqrt_u * fputil::polyeval(u, POLY_COEFFS[0], POLY_COEFFS[1],
                                POLY_COEFFS[2], POLY_COEFFS[3], POLY_COEFFS[4]);

  // Same as acos(x), but devided the expression with pi
  return fputil::cast<float16>(
      x_sign ? fputil::multiply_add(-2.0f, asin_sqrt_u, 1.0f)
             : 2.0f * asin_sqrt_u);
}
} // namespace LIBC_NAMESPACE_DECL