aboutsummaryrefslogtreecommitdiff
path: root/libc/src/math/generic/acosf16.cpp
blob: 202a950fbb5dd0bdda927597912cca06808512cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
//===-- Half-precision acosf16(x) function --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception.
//
//
//===----------------------------------------------------------------------===//

#include "src/math/acosf16.h"
#include "hdr/errno_macros.h"
#include "hdr/fenv_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/cast.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/sqrt.h"
#include "src/__support/macros/optimization.h"

namespace LIBC_NAMESPACE_DECL {

// Generated by Sollya using the following command:
// > round(pi/2, SG, RN);
// > round(pi, SG, RN);
static constexpr float PI_OVER_2 = 0x1.921fb6p0f;
static constexpr float PI = 0x1.921fb6p1f;

#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
static constexpr size_t N_EXCEPTS = 2;

static constexpr fputil::ExceptValues<float16, N_EXCEPTS> ACOSF16_EXCEPTS{{
    // (input, RZ output, RU offset, RD offset, RN offset)
    {0xacaf, 0x3e93, 1, 0, 0},
    {0xb874, 0x4052, 1, 0, 1},
}};
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS

LLVM_LIBC_FUNCTION(float16, acosf16, (float16 x)) {
  using FPBits = fputil::FPBits<float16>;
  FPBits xbits(x);

  uint16_t x_u = xbits.uintval();
  uint16_t x_abs = x_u & 0x7fff;
  uint16_t x_sign = x_u >> 15;

  // |x| > 0x1p0, |x| > 1, or x is NaN.
  if (LIBC_UNLIKELY(x_abs > 0x3c00)) {
    // acosf16(NaN) = NaN
    if (xbits.is_nan()) {
      if (xbits.is_signaling_nan()) {
        fputil::raise_except_if_required(FE_INVALID);
        return FPBits::quiet_nan().get_val();
      }

      return x;
    }

    // 1 < |x| <= +/-inf
    fputil::raise_except_if_required(FE_INVALID);
    fputil::set_errno_if_required(EDOM);

    return FPBits::quiet_nan().get_val();
  }

  float xf = x;

#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
  // Handle exceptional values
  if (auto r = ACOSF16_EXCEPTS.lookup(x_u); LIBC_UNLIKELY(r.has_value()))
    return r.value();
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS

  // |x| == 0x1p0, x is 1 or -1
  // if x is (-)1, return pi, else
  // if x is (+)1, return 0
  if (LIBC_UNLIKELY(x_abs == 0x3c00))
    return fputil::cast<float16>(x_sign ? PI : 0.0f);

  float xsq = xf * xf;

  // |x| <= 0x1p-1, |x| <= 0.5
  if (x_abs <= 0x3800) {
    // if x is 0, return pi/2
    if (LIBC_UNLIKELY(x_abs == 0))
      return fputil::cast<float16>(PI_OVER_2);

    // Note that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x)
    // Degree-6 minimax polynomial of asin(x) generated by Sollya with:
    // > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]);
    float interm =
        fputil::polyeval(xsq, 0x1.000002p0f, 0x1.554c2ap-3f, 0x1.3541ccp-4f,
                         0x1.43b2d6p-5f, 0x1.a0d73ep-5f);
    return fputil::cast<float16>(fputil::multiply_add(-xf, interm, PI_OVER_2));
  }

  // When |x| > 0.5, assume that 0.5 < |x| <= 1
  //
  // Step-by-step range-reduction proof:
  // 1:  Let y = asin(x), such that, x = sin(y)
  // 2:  From complimentary angle identity:
  //       x = sin(y) = cos(pi/2 - y)
  // 3:  Let z = pi/2 - y, such that x = cos(z)
  // 4:  From double angle formula; cos(2A) = 1 - 2 * sin^2(A):
  //       z = 2A, z/2 = A
  //       cos(z) = 1 - 2 * sin^2(z/2)
  // 5:  Make sin(z/2) subject of the formula:
  //       sin(z/2) = sqrt((1 - cos(z))/2)
  // 6:  Recall [3]; x = cos(z). Therefore:
  //       sin(z/2) = sqrt((1 - x)/2)
  // 7:  Let u = (1 - x)/2
  // 8:  Therefore:
  //       asin(sqrt(u)) = z/2
  //       2 * asin(sqrt(u)) = z
  // 9:  Recall [3]; z = pi/2 - y. Therefore:
  //       y = pi/2 - z
  //       y = pi/2 - 2 * asin(sqrt(u))
  // 10: Recall [1], y = asin(x). Therefore:
  //       asin(x) = pi/2 - 2 * asin(sqrt(u))
  // 11: Recall that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x)
  //     Therefore:
  //       acos(x) = pi/2 - (pi/2 - 2 * asin(sqrt(u)))
  //       acos(x) = 2 * asin(sqrt(u))
  //
  // THE RANGE REDUCTION, HOW?
  // 12: Recall [7], u = (1 - x)/2
  // 13: Since 0.5 < x <= 1, therefore:
  //       0 <= u <= 0.25 and 0 <= sqrt(u) <= 0.5
  //
  // Hence, we can reuse the same [0, 0.5] domain polynomial approximation for
  // Step [11] as `sqrt(u)` is in range.
  // When -1 < x <= -0.5, the identity:
  //       acos(x) = pi - acos(-x)
  // allows us to compute for the negative x value (lhs)
  // with a positive x value instead (rhs).

  float xf_abs = (xf < 0 ? -xf : xf);
  float u = fputil::multiply_add(-0.5f, xf_abs, 0.5f);
  float sqrt_u = fputil::sqrt<float>(u);

  // Degree-6 minimax polynomial of asin(x) generated by Sollya with:
  // > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]);
  float asin_sqrt_u =
      sqrt_u * fputil::polyeval(u, 0x1.000002p0f, 0x1.554c2ap-3f,
                                0x1.3541ccp-4f, 0x1.43b2d6p-5f, 0x1.a0d73ep-5f);

  return fputil::cast<float16>(
      x_sign ? fputil::multiply_add(-2.0f, asin_sqrt_u, PI) : 2 * asin_sqrt_u);
}
} // namespace LIBC_NAMESPACE_DECL