aboutsummaryrefslogtreecommitdiff
path: root/flang/lib/Semantics/check-call.cpp
blob: 6f2503285013d71b33fc5218ba1cf6488c3734f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
//===-- lib/Semantics/check-call.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "check-call.h"
#include "definable.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold-designator.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/characters.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/tools.h"
#include <map>
#include <string>

using namespace Fortran::parser::literals;
namespace characteristics = Fortran::evaluate::characteristics;

namespace Fortran::semantics {

static void CheckImplicitInterfaceArg(evaluate::ActualArgument &arg,
    parser::ContextualMessages &messages, SemanticsContext &context) {
  auto restorer{
      messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
  if (auto kw{arg.keyword()}) {
    messages.Say(*kw,
        "Keyword '%s=' may not appear in a reference to a procedure with an implicit interface"_err_en_US,
        *kw);
  }
  auto type{arg.GetType()};
  if (type) {
    if (type->IsAssumedType()) {
      messages.Say(
          "Assumed type actual argument requires an explicit interface"_err_en_US);
    } else if (type->IsUnlimitedPolymorphic()) {
      messages.Say(
          "Unlimited polymorphic actual argument requires an explicit interface"_err_en_US);
    } else if (const DerivedTypeSpec * derived{GetDerivedTypeSpec(type)}) {
      if (!derived->parameters().empty()) {
        messages.Say(
            "Parameterized derived type actual argument requires an explicit interface"_err_en_US);
      }
    }
  }
  if (arg.isPercentVal() &&
      (!type || !type->IsLengthlessIntrinsicType() || arg.Rank() != 0)) {
    messages.Say(
        "%VAL argument must be a scalar numeric or logical expression"_err_en_US);
  }
  if (const auto *expr{arg.UnwrapExpr()}) {
    if (const Symbol * base{GetFirstSymbol(*expr)};
        base && IsFunctionResult(*base)) {
      context.NoteDefinedSymbol(*base);
    }
    if (IsBOZLiteral(*expr)) {
      messages.Say("BOZ argument requires an explicit interface"_err_en_US);
    } else if (evaluate::IsNullPointerOrAllocatable(expr)) {
      messages.Say(
          "Null pointer argument requires an explicit interface"_err_en_US);
    } else if (auto named{evaluate::ExtractNamedEntity(*expr)}) {
      const Symbol &symbol{named->GetLastSymbol()};
      if (evaluate::IsAssumedRank(symbol)) {
        messages.Say(
            "Assumed rank argument requires an explicit interface"_err_en_US);
      }
      if (symbol.attrs().test(Attr::ASYNCHRONOUS)) {
        messages.Say(
            "ASYNCHRONOUS argument requires an explicit interface"_err_en_US);
      }
      if (symbol.attrs().test(Attr::VOLATILE)) {
        messages.Say(
            "VOLATILE argument requires an explicit interface"_err_en_US);
      }
    } else if (auto argChars{characteristics::DummyArgument::FromActual(
                   "actual argument", *expr, context.foldingContext(),
                   /*forImplicitInterface=*/true)}) {
      const auto *argProcDesignator{
          std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
      if (const auto *argProcSymbol{
              argProcDesignator ? argProcDesignator->GetSymbol() : nullptr}) {
        if (!argChars->IsTypelessIntrinsicDummy() && argProcDesignator &&
            argProcDesignator->IsElemental()) { // C1533
          evaluate::SayWithDeclaration(messages, *argProcSymbol,
              "Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
              argProcSymbol->name());
        } else if (const auto *subp{argProcSymbol->GetUltimate()
                                        .detailsIf<SubprogramDetails>()}) {
          if (subp->stmtFunction()) {
            evaluate::SayWithDeclaration(messages, *argProcSymbol,
                "Statement function '%s' may not be passed as an actual argument"_err_en_US,
                argProcSymbol->name());
          }
        }
      }
    }
  }
}

// F'2023 15.5.2.12p1: "Sequence association only applies when the dummy
// argument is an explicit-shape or assumed-size array."
static bool CanAssociateWithStorageSequence(
    const characteristics::DummyDataObject &dummy) {
  return !dummy.type.attrs().test(
             characteristics::TypeAndShape::Attr::AssumedRank) &&
      !dummy.type.attrs().test(
          characteristics::TypeAndShape::Attr::AssumedShape) &&
      !dummy.attrs.test(characteristics::DummyDataObject::Attr::Allocatable) &&
      !dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer) &&
      dummy.type.corank() == 0;
}

// When a CHARACTER actual argument is known to be short,
// we extend it on the right with spaces and a warning if
// possible.  When it is long, and not required to be equal,
// the usage conforms to the standard and no warning is needed.
static void CheckCharacterActual(evaluate::Expr<evaluate::SomeType> &actual,
    const characteristics::DummyDataObject &dummy,
    characteristics::TypeAndShape &actualType, SemanticsContext &context,
    parser::ContextualMessages &messages, bool extentErrors,
    const std::string &dummyName) {
  if (dummy.type.type().category() == TypeCategory::Character &&
      actualType.type().category() == TypeCategory::Character &&
      dummy.type.type().kind() == actualType.type().kind() &&
      !dummy.attrs.test(
          characteristics::DummyDataObject::Attr::DeducedFromActual)) {
    bool actualIsAssumedRank{evaluate::IsAssumedRank(actual)};
    if (actualIsAssumedRank &&
        !dummy.type.attrs().test(
            characteristics::TypeAndShape::Attr::AssumedRank)) {
      if (!context.languageFeatures().IsEnabled(
              common::LanguageFeature::AssumedRankPassedToNonAssumedRank)) {
        messages.Say(
            "Assumed-rank character array may not be associated with a dummy argument that is not assumed-rank"_err_en_US);
      } else {
        context.Warn(common::LanguageFeature::AssumedRankPassedToNonAssumedRank,
            messages.at(),
            "Assumed-rank character array should not be associated with a dummy argument that is not assumed-rank"_port_en_US);
      }
    }
    if (dummy.type.LEN() && actualType.LEN()) {
      evaluate::FoldingContext &foldingContext{context.foldingContext()};
      auto dummyLength{
          ToInt64(Fold(foldingContext, common::Clone(*dummy.type.LEN())))};
      auto actualLength{
          ToInt64(Fold(foldingContext, common::Clone(*actualType.LEN())))};
      if (dummyLength && actualLength) {
        bool canAssociate{CanAssociateWithStorageSequence(dummy)};
        if (dummy.type.Rank() > 0 && canAssociate) {
          // Character storage sequence association (F'2023 15.5.2.12p4)
          if (auto dummySize{evaluate::ToInt64(evaluate::Fold(
                  foldingContext, evaluate::GetSize(dummy.type.shape())))}) {
            auto dummyChars{*dummySize * *dummyLength};
            if (actualType.Rank() == 0 && !actualIsAssumedRank) {
              evaluate::DesignatorFolder folder{
                  context.foldingContext(), /*getLastComponent=*/true};
              if (auto actualOffset{folder.FoldDesignator(actual)}) {
                std::int64_t actualChars{*actualLength};
                if (IsAllocatableOrPointer(actualOffset->symbol())) {
                  // don't use actualOffset->symbol().size()!
                } else if (static_cast<std::size_t>(actualOffset->offset()) >=
                        actualOffset->symbol().size() ||
                    !evaluate::IsContiguous(
                        actualOffset->symbol(), foldingContext)) {
                  // If substring, take rest of substring
                  if (*actualLength > 0) {
                    actualChars -=
                        (actualOffset->offset() / actualType.type().kind()) %
                        *actualLength;
                  }
                } else {
                  actualChars = (static_cast<std::int64_t>(
                                     actualOffset->symbol().size()) -
                                    actualOffset->offset()) /
                      actualType.type().kind();
                }
                if (actualChars < dummyChars) {
                  if (extentErrors) {
                    messages.Say(
                        "Actual argument has fewer characters remaining in storage sequence (%jd) than %s (%jd)"_err_en_US,
                        static_cast<std::intmax_t>(actualChars), dummyName,
                        static_cast<std::intmax_t>(dummyChars));
                  } else if (context.ShouldWarn(
                                 common::UsageWarning::ShortCharacterActual)) {
                    messages.Say(common::UsageWarning::ShortCharacterActual,
                        "Actual argument has fewer characters remaining in storage sequence (%jd) than %s (%jd)"_warn_en_US,
                        static_cast<std::intmax_t>(actualChars), dummyName,
                        static_cast<std::intmax_t>(dummyChars));
                  }
                }
              }
            } else { // actual.type.Rank() > 0
              if (auto actualSize{evaluate::ToInt64(evaluate::Fold(
                      foldingContext, evaluate::GetSize(actualType.shape())))};
                  actualSize &&
                  *actualSize * *actualLength < *dummySize * *dummyLength) {
                if (extentErrors) {
                  messages.Say(
                      "Actual argument array has fewer characters (%jd) than %s array (%jd)"_err_en_US,
                      static_cast<std::intmax_t>(*actualSize * *actualLength),
                      dummyName,
                      static_cast<std::intmax_t>(*dummySize * *dummyLength));
                } else if (context.ShouldWarn(
                               common::UsageWarning::ShortCharacterActual)) {
                  messages.Say(common::UsageWarning::ShortCharacterActual,
                      "Actual argument array has fewer characters (%jd) than %s array (%jd)"_warn_en_US,
                      static_cast<std::intmax_t>(*actualSize * *actualLength),
                      dummyName,
                      static_cast<std::intmax_t>(*dummySize * *dummyLength));
                }
              }
            }
          }
        } else if (*actualLength != *dummyLength) {
          // Not using storage sequence association, and the lengths don't
          // match.
          if (!canAssociate) {
            // F'2023 15.5.2.5 paragraph 4
            messages.Say(
                "Actual argument variable length '%jd' does not match the expected length '%jd'"_err_en_US,
                *actualLength, *dummyLength);
          } else if (*actualLength < *dummyLength) {
            CHECK(dummy.type.Rank() == 0);
            bool isVariable{evaluate::IsVariable(actual)};
            if (context.ShouldWarn(
                    common::UsageWarning::ShortCharacterActual)) {
              if (isVariable) {
                messages.Say(common::UsageWarning::ShortCharacterActual,
                    "Actual argument variable length '%jd' is less than expected length '%jd'"_warn_en_US,
                    *actualLength, *dummyLength);
              } else {
                messages.Say(common::UsageWarning::ShortCharacterActual,
                    "Actual argument expression length '%jd' is less than expected length '%jd'"_warn_en_US,
                    *actualLength, *dummyLength);
              }
            }
            if (!isVariable) {
              auto converted{
                  ConvertToType(dummy.type.type(), std::move(actual))};
              CHECK(converted);
              actual = std::move(*converted);
              actualType.set_LEN(SubscriptIntExpr{*dummyLength});
            }
          }
        }
      }
    }
  }
}

// Automatic conversion of different-kind INTEGER scalar actual
// argument expressions (not variables) to INTEGER scalar dummies.
// We return nonstandard INTEGER(8) results from intrinsic functions
// like SIZE() by default in order to facilitate the use of large
// arrays.  Emit a warning when downconverting.
static void ConvertIntegerActual(evaluate::Expr<evaluate::SomeType> &actual,
    const characteristics::TypeAndShape &dummyType,
    characteristics::TypeAndShape &actualType,
    parser::ContextualMessages &messages, SemanticsContext &semanticsContext) {
  if (dummyType.type().category() == TypeCategory::Integer &&
      actualType.type().category() == TypeCategory::Integer &&
      dummyType.type().kind() != actualType.type().kind() &&
      dummyType.Rank() == 0 && actualType.Rank() == 0 &&
      !evaluate::IsVariable(actual)) {
    auto converted{
        evaluate::ConvertToType(dummyType.type(), std::move(actual))};
    CHECK(converted);
    actual = std::move(*converted);
    if (dummyType.type().kind() < actualType.type().kind()) {
      if (!semanticsContext.IsEnabled(
              common::LanguageFeature::ActualIntegerConvertedToSmallerKind)) {
        messages.Say(
            "Actual argument scalar expression of type INTEGER(%d) cannot be implicitly converted to smaller dummy argument type INTEGER(%d)"_err_en_US,
            actualType.type().kind(), dummyType.type().kind());
      } else if (semanticsContext.ShouldWarn(common::LanguageFeature::
                         ActualIntegerConvertedToSmallerKind)) {
        messages.Say(
            common::LanguageFeature::ActualIntegerConvertedToSmallerKind,
            "Actual argument scalar expression of type INTEGER(%d) was converted to smaller dummy argument type INTEGER(%d)"_port_en_US,
            actualType.type().kind(), dummyType.type().kind());
      }
    }
    actualType = dummyType;
  }
}

// Automatic conversion of different-kind LOGICAL scalar actual argument
// expressions (not variables) to LOGICAL scalar dummies when the dummy is of
// default logical kind. This allows expressions in dummy arguments to work when
// the default logical kind is not the one used in LogicalResult. This will
// always be safe even when downconverting so no warning is needed.
static void ConvertLogicalActual(evaluate::Expr<evaluate::SomeType> &actual,
    const characteristics::TypeAndShape &dummyType,
    characteristics::TypeAndShape &actualType) {
  if (dummyType.type().category() == TypeCategory::Logical &&
      actualType.type().category() == TypeCategory::Logical &&
      dummyType.type().kind() != actualType.type().kind() &&
      !evaluate::IsVariable(actual)) {
    auto converted{
        evaluate::ConvertToType(dummyType.type(), std::move(actual))};
    CHECK(converted);
    actual = std::move(*converted);
    actualType = dummyType;
  }
}

static bool DefersSameTypeParameters(
    const DerivedTypeSpec *actual, const DerivedTypeSpec *dummy) {
  if (actual && dummy) {
    for (const auto &pair : actual->parameters()) {
      const ParamValue &actualValue{pair.second};
      const ParamValue *dummyValue{dummy->FindParameter(pair.first)};
      if (!dummyValue ||
          (actualValue.isDeferred() != dummyValue->isDeferred())) {
        return false;
      }
    }
  }
  return true;
}

static void CheckExplicitDataArg(const characteristics::DummyDataObject &dummy,
    const std::string &dummyName, evaluate::Expr<evaluate::SomeType> &actual,
    characteristics::TypeAndShape &actualType, bool isElemental,
    SemanticsContext &context, evaluate::FoldingContext &foldingContext,
    const Scope *scope, const evaluate::SpecificIntrinsic *intrinsic,
    bool allowActualArgumentConversions, bool extentErrors,
    const characteristics::Procedure &procedure,
    const evaluate::ActualArgument &arg) {

  // Basic type & rank checking
  parser::ContextualMessages &messages{foldingContext.messages()};
  CheckCharacterActual(
      actual, dummy, actualType, context, messages, extentErrors, dummyName);
  bool dummyIsAllocatable{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Allocatable)};
  bool dummyIsPointer{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer)};
  bool dummyIsAllocatableOrPointer{dummyIsAllocatable || dummyIsPointer};
  allowActualArgumentConversions &= !dummyIsAllocatableOrPointer;
  bool typesCompatibleWithIgnoreTKR{
      (dummy.ignoreTKR.test(common::IgnoreTKR::Type) &&
          (dummy.type.type().category() == TypeCategory::Derived ||
              actualType.type().category() == TypeCategory::Derived ||
              dummy.type.type().category() != actualType.type().category())) ||
      (dummy.ignoreTKR.test(common::IgnoreTKR::Kind) &&
          dummy.type.type().category() == actualType.type().category())};
  allowActualArgumentConversions &= !typesCompatibleWithIgnoreTKR;
  if (allowActualArgumentConversions) {
    ConvertIntegerActual(actual, dummy.type, actualType, messages, context);
    ConvertLogicalActual(actual, dummy.type, actualType);
  }
  bool typesCompatible{typesCompatibleWithIgnoreTKR ||
      dummy.type.type().IsTkCompatibleWith(actualType.type())};
  int dummyRank{dummy.type.Rank()};
  if (typesCompatible) {
    if (const auto *constantChar{
            evaluate::UnwrapConstantValue<evaluate::Ascii>(actual)};
        constantChar && constantChar->wasHollerith() &&
        dummy.type.type().IsUnlimitedPolymorphic() &&
        context.ShouldWarn(common::LanguageFeature::HollerithPolymorphic)) {
      messages.Say(common::LanguageFeature::HollerithPolymorphic,
          "passing Hollerith to unlimited polymorphic as if it were CHARACTER"_port_en_US);
    }
  } else if (dummyRank == 0 && allowActualArgumentConversions) {
    // Extension: pass Hollerith literal to scalar as if it had been BOZ
    if (auto converted{evaluate::HollerithToBOZ(
            foldingContext, actual, dummy.type.type())}) {
      if (context.ShouldWarn(
              common::LanguageFeature::HollerithOrCharacterAsBOZ)) {
        messages.Say(common::LanguageFeature::HollerithOrCharacterAsBOZ,
            "passing Hollerith or character literal as if it were BOZ"_port_en_US);
      }
      actual = *converted;
      actualType.type() = dummy.type.type();
      typesCompatible = true;
    }
  }
  bool dummyIsAssumedRank{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedRank)};
  bool actualIsAssumedSize{actualType.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedSize)};
  bool actualIsAssumedRank{evaluate::IsAssumedRank(actual)};
  bool actualIsPointer{evaluate::IsObjectPointer(actual)};
  bool actualIsAllocatable{evaluate::IsAllocatableDesignator(actual)};
  bool actualMayBeAssumedSize{actualIsAssumedSize ||
      (actualIsAssumedRank && !actualIsPointer && !actualIsAllocatable)};
  bool actualIsPolymorphic{actualType.type().IsPolymorphic()};
  const auto *actualDerived{evaluate::GetDerivedTypeSpec(actualType.type())};
  if (typesCompatible) {
    if (isElemental) {
    } else if (dummyIsAssumedRank) {
      if (actualMayBeAssumedSize && dummy.intent == common::Intent::Out) {
        // An INTENT(OUT) dummy might be a no-op at run time
        bool dummyHasSignificantIntentOut{actualIsPolymorphic ||
            (actualDerived &&
                (actualDerived->HasDefaultInitialization(
                     /*ignoreAllocatable=*/false, /*ignorePointer=*/true) ||
                    actualDerived->HasDestruction()))};
        const char *actualDesc{
            actualIsAssumedSize ? "Assumed-size" : "Assumed-rank"};
        if (dummyHasSignificantIntentOut) {
          messages.Say(
              "%s actual argument may not be associated with INTENT(OUT) assumed-rank dummy argument requiring finalization, destruction, or initialization"_err_en_US,
              actualDesc);
        } else {
          context.Warn(common::UsageWarning::Portability, messages.at(),
              "%s actual argument should not be associated with INTENT(OUT) assumed-rank dummy argument"_port_en_US,
              actualDesc);
        }
      }
    } else if (dummy.ignoreTKR.test(common::IgnoreTKR::Rank)) {
    } else if (dummyRank > 0 && !dummyIsAllocatableOrPointer &&
        !dummy.type.attrs().test(
            characteristics::TypeAndShape::Attr::AssumedShape) &&
        !dummy.type.attrs().test(
            characteristics::TypeAndShape::Attr::DeferredShape) &&
        (actualType.Rank() > 0 || IsArrayElement(actual))) {
      // Sequence association (15.5.2.11) applies -- rank need not match
      // if the actual argument is an array or array element designator,
      // and the dummy is an array, but not assumed-shape or an INTENT(IN)
      // pointer that's standing in for an assumed-shape dummy.
    } else if (dummy.type.shape() && actualType.shape()) {
      // Let CheckConformance accept actual scalars; storage association
      // cases are checked here below.
      CheckConformance(messages, *dummy.type.shape(), *actualType.shape(),
          dummyIsAllocatableOrPointer
              ? evaluate::CheckConformanceFlags::None
              : evaluate::CheckConformanceFlags::RightScalarExpandable,
          "dummy argument", "actual argument");
    }
  } else {
    const auto &len{actualType.LEN()};
    messages.Say(
        "Actual argument type '%s' is not compatible with dummy argument type '%s'"_err_en_US,
        actualType.type().AsFortran(len ? len->AsFortran() : ""),
        dummy.type.type().AsFortran());
  }

  auto actualCoarrayRef{ExtractCoarrayRef(actual)};
  bool dummyIsAssumedSize{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedSize)};
  bool dummyIsAsynchronous{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Asynchronous)};
  bool dummyIsVolatile{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Volatile)};
  bool dummyIsValue{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Value)};
  bool dummyIsPolymorphic{dummy.type.type().IsPolymorphic()};
  if (actualIsPolymorphic && dummyIsPolymorphic &&
      actualCoarrayRef) { // 15.5.2.4(2)
    messages.Say(
        "Coindexed polymorphic object may not be associated with a polymorphic %s"_err_en_US,
        dummyName);
  }
  if (actualIsPolymorphic && !dummyIsPolymorphic &&
      actualIsAssumedSize) { // 15.5.2.4(2)
    messages.Say(
        "Assumed-size polymorphic array may not be associated with a monomorphic %s"_err_en_US,
        dummyName);
  }

  // Derived type actual argument checks
  const Symbol *actualFirstSymbol{evaluate::GetFirstSymbol(actual)};
  bool actualIsAsynchronous{
      actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::ASYNCHRONOUS)};
  bool actualIsVolatile{
      actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::VOLATILE)};
  if (actualDerived && !actualDerived->IsVectorType()) {
    if (dummy.type.type().IsAssumedType()) {
      if (!actualDerived->parameters().empty()) { // 15.5.2.4(2)
        messages.Say(
            "Actual argument associated with TYPE(*) %s may not have a parameterized derived type"_err_en_US,
            dummyName);
      }
      if (const Symbol *
          tbp{FindImmediateComponent(*actualDerived, [](const Symbol &symbol) {
            return symbol.has<ProcBindingDetails>();
          })}) { // 15.5.2.4(2)
        evaluate::SayWithDeclaration(messages, *tbp,
            "Actual argument associated with TYPE(*) %s may not have type-bound procedure '%s'"_err_en_US,
            dummyName, tbp->name());
      }
      auto finals{FinalsForDerivedTypeInstantiation(*actualDerived)};
      if (!finals.empty()) { // 15.5.2.4(2)
        SourceName name{finals.front()->name()};
        if (auto *msg{messages.Say(
                "Actual argument associated with TYPE(*) %s may not have derived type '%s' with FINAL subroutine '%s'"_err_en_US,
                dummyName, actualDerived->typeSymbol().name(), name)}) {
          msg->Attach(name, "FINAL subroutine '%s' in derived type '%s'"_en_US,
              name, actualDerived->typeSymbol().name());
        }
      }
    }
    if (actualCoarrayRef) {
      if (dummy.intent != common::Intent::In && !dummyIsValue) {
        if (auto bad{FindAllocatableUltimateComponent(
                *actualDerived)}) { // 15.5.2.4(6)
          evaluate::SayWithDeclaration(messages, *bad,
              "Coindexed actual argument with ALLOCATABLE ultimate component '%s' must be associated with a %s with VALUE or INTENT(IN) attributes"_err_en_US,
              bad.BuildResultDesignatorName(), dummyName);
        }
      }
      const Symbol &coarray{actualCoarrayRef->GetLastSymbol()};
      if (const DeclTypeSpec * type{coarray.GetType()}) { // C1537
        if (const DerivedTypeSpec * derived{type->AsDerived()}) {
          if (auto bad{semantics::FindPointerUltimateComponent(*derived)}) {
            evaluate::SayWithDeclaration(messages, coarray,
                "Coindexed object '%s' with POINTER ultimate component '%s' cannot be associated with %s"_err_en_US,
                coarray.name(), bad.BuildResultDesignatorName(), dummyName);
          }
        }
      }
    }
    if (actualIsVolatile != dummyIsVolatile) { // 15.5.2.4(22)
      if (auto bad{semantics::FindCoarrayUltimateComponent(*actualDerived)}) {
        evaluate::SayWithDeclaration(messages, *bad,
            "VOLATILE attribute must match for %s when actual argument has a coarray ultimate component '%s'"_err_en_US,
            dummyName, bad.BuildResultDesignatorName());
      }
    }
  }

  // Rank and shape checks
  const auto *actualLastSymbol{evaluate::GetLastSymbol(actual)};
  if (actualLastSymbol) {
    actualLastSymbol = &ResolveAssociations(*actualLastSymbol);
  }
  int actualRank{actualType.Rank()};
  if (dummy.type.attrs().test(
          characteristics::TypeAndShape::Attr::AssumedShape)) {
    // 15.5.2.4(16)
    if (actualIsAssumedRank) {
      messages.Say(
          "Assumed-rank actual argument may not be associated with assumed-shape %s"_err_en_US,
          dummyName);
    } else if (actualRank == 0) {
      messages.Say(
          "Scalar actual argument may not be associated with assumed-shape %s"_err_en_US,
          dummyName);
    } else if (actualIsAssumedSize && actualLastSymbol) {
      evaluate::SayWithDeclaration(messages, *actualLastSymbol,
          "Assumed-size array may not be associated with assumed-shape %s"_err_en_US,
          dummyName);
    }
  } else if (dummyRank > 0) {
    bool basicError{false};
    if (actualRank == 0 && !actualIsAssumedRank &&
        !dummyIsAllocatableOrPointer) {
      // Actual is scalar, dummy is an array.  F'2023 15.5.2.5p14
      if (actualCoarrayRef) {
        basicError = true;
        messages.Say(
            "Coindexed scalar actual argument must be associated with a scalar %s"_err_en_US,
            dummyName);
      }
      bool actualIsArrayElement{IsArrayElement(actual) != nullptr};
      bool actualIsCKindCharacter{
          actualType.type().category() == TypeCategory::Character &&
          actualType.type().kind() == 1};
      if (!actualIsCKindCharacter) {
        if (!actualIsArrayElement &&
            !(dummy.type.type().IsAssumedType() && dummyIsAssumedSize) &&
            !dummyIsAssumedRank &&
            !dummy.ignoreTKR.test(common::IgnoreTKR::Rank)) {
          basicError = true;
          messages.Say(
              "Whole scalar actual argument may not be associated with a %s array"_err_en_US,
              dummyName);
        }
        if (actualIsPolymorphic) {
          basicError = true;
          messages.Say(
              "Polymorphic scalar may not be associated with a %s array"_err_en_US,
              dummyName);
        }
        bool isOkBecauseContiguous{
            context.IsEnabled(
                common::LanguageFeature::ContiguousOkForSeqAssociation) &&
            actualLastSymbol &&
            evaluate::IsContiguous(*actualLastSymbol, foldingContext)};
        if (actualIsArrayElement && actualLastSymbol &&
            !dummy.ignoreTKR.test(common::IgnoreTKR::Contiguous)) {
          if (IsPointer(*actualLastSymbol)) {
            if (isOkBecauseContiguous) {
              context.Warn(
                  common::LanguageFeature::ContiguousOkForSeqAssociation,
                  messages.at(),
                  "Element of contiguous pointer array is accepted for storage sequence association"_port_en_US);
            } else {
              basicError = true;
              messages.Say(
                  "Element of pointer array may not be associated with a %s array"_err_en_US,
                  dummyName);
            }
          } else if (IsAssumedShape(*actualLastSymbol) &&
              !dummy.ignoreTKR.test(common::IgnoreTKR::Contiguous)) {
            if (isOkBecauseContiguous) {
              context.Warn(
                  common::LanguageFeature::ContiguousOkForSeqAssociation,
                  messages.at(),
                  "Element of contiguous assumed-shape array is accepted for storage sequence association"_port_en_US);
            } else {
              basicError = true;
              messages.Say(
                  "Element of assumed-shape array may not be associated with a %s array"_err_en_US,
                  dummyName);
            }
          }
        }
      }
    }
    // Storage sequence association (F'2023 15.5.2.12p3) checks.
    // Character storage sequence association is checked in
    // CheckCharacterActual().
    if (!basicError &&
        actualType.type().category() != TypeCategory::Character &&
        CanAssociateWithStorageSequence(dummy) &&
        !dummy.attrs.test(
            characteristics::DummyDataObject::Attr::DeducedFromActual)) {
      if (auto dummySize{evaluate::ToInt64(evaluate::Fold(
              foldingContext, evaluate::GetSize(dummy.type.shape())))}) {
        if (actualIsAssumedRank) {
          if (!context.languageFeatures().IsEnabled(
                  common::LanguageFeature::AssumedRankPassedToNonAssumedRank)) {
            messages.Say(
                "Assumed-rank array may not be associated with a dummy argument that is not assumed-rank"_err_en_US);
          } else {
            context.Warn(
                common::LanguageFeature::AssumedRankPassedToNonAssumedRank,
                messages.at(),
                "Assumed-rank array should not be associated with a dummy argument that is not assumed-rank"_port_en_US);
          }
        } else if (actualRank == 0) {
          if (evaluate::IsArrayElement(actual)) {
            // Actual argument is a scalar array element
            evaluate::DesignatorFolder folder{
                context.foldingContext(), /*getLastComponent=*/true};
            if (auto actualOffset{folder.FoldDesignator(actual)}) {
              std::optional<std::int64_t> actualElements;
              if (IsAllocatableOrPointer(actualOffset->symbol())) {
                // don't use actualOffset->symbol().size()!
              } else if (static_cast<std::size_t>(actualOffset->offset()) >=
                      actualOffset->symbol().size() ||
                  !evaluate::IsContiguous(
                      actualOffset->symbol(), foldingContext)) {
                actualElements = 1;
              } else if (auto actualSymType{evaluate::DynamicType::From(
                             actualOffset->symbol())}) {
                if (auto actualSymTypeBytes{
                        evaluate::ToInt64(evaluate::Fold(foldingContext,
                            actualSymType->MeasureSizeInBytes(
                                foldingContext, false)))};
                    actualSymTypeBytes && *actualSymTypeBytes > 0) {
                  actualElements = (static_cast<std::int64_t>(
                                        actualOffset->symbol().size()) -
                                       actualOffset->offset()) /
                      *actualSymTypeBytes;
                }
              }
              if (actualElements && *actualElements < *dummySize) {
                if (extentErrors) {
                  messages.Say(
                      "Actual argument has fewer elements remaining in storage sequence (%jd) than %s array (%jd)"_err_en_US,
                      static_cast<std::intmax_t>(*actualElements), dummyName,
                      static_cast<std::intmax_t>(*dummySize));
                } else if (context.ShouldWarn(
                               common::UsageWarning::ShortArrayActual)) {
                  messages.Say(common::UsageWarning::ShortArrayActual,
                      "Actual argument has fewer elements remaining in storage sequence (%jd) than %s array (%jd)"_warn_en_US,
                      static_cast<std::intmax_t>(*actualElements), dummyName,
                      static_cast<std::intmax_t>(*dummySize));
                }
              }
            }
          }
        } else {
          if (auto actualSize{evaluate::ToInt64(evaluate::Fold(
                  foldingContext, evaluate::GetSize(actualType.shape())))};
              actualSize && *actualSize < *dummySize) {
            if (extentErrors) {
              messages.Say(
                  "Actual argument array has fewer elements (%jd) than %s array (%jd)"_err_en_US,
                  static_cast<std::intmax_t>(*actualSize), dummyName,
                  static_cast<std::intmax_t>(*dummySize));
            } else if (context.ShouldWarn(
                           common::UsageWarning::ShortArrayActual)) {
              messages.Say(common::UsageWarning::ShortArrayActual,
                  "Actual argument array has fewer elements (%jd) than %s array (%jd)"_warn_en_US,
                  static_cast<std::intmax_t>(*actualSize), dummyName,
                  static_cast<std::intmax_t>(*dummySize));
            }
          }
        }
      }
    }
  }
  const ObjectEntityDetails *actualLastObject{actualLastSymbol
          ? actualLastSymbol->detailsIf<ObjectEntityDetails>()
          : nullptr};
  if (actualLastObject && actualLastObject->IsCoarray() &&
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Allocatable) &&
      dummy.intent == common::Intent::Out &&
      !(intrinsic &&
          evaluate::AcceptsIntentOutAllocatableCoarray(
              intrinsic->name))) { // C846
    messages.Say(
        "ALLOCATABLE coarray '%s' may not be associated with INTENT(OUT) %s"_err_en_US,
        actualLastSymbol->name(), dummyName);
  }

  // Definability checking
  // Problems with polymorphism are caught in the callee's definition.
  if (scope) {
    std::optional<parser::MessageFixedText> undefinableMessage;
    DefinabilityFlags flags{DefinabilityFlag::PolymorphicOkInPure};
    if (dummy.intent == common::Intent::InOut) {
      flags.set(DefinabilityFlag::AllowEventLockOrNotifyType);
      undefinableMessage =
          "Actual argument associated with INTENT(IN OUT) %s is not definable"_err_en_US;
    } else if (dummy.intent == common::Intent::Out) {
      undefinableMessage =
          "Actual argument associated with INTENT(OUT) %s is not definable"_err_en_US;
    } else if (context.ShouldWarn(common::LanguageFeature::
                       UndefinableAsynchronousOrVolatileActual)) {
      if (dummy.attrs.test(
              characteristics::DummyDataObject::Attr::Asynchronous)) {
        undefinableMessage =
            "Actual argument associated with ASYNCHRONOUS %s is not definable"_warn_en_US;
      } else if (dummy.attrs.test(
                     characteristics::DummyDataObject::Attr::Volatile)) {
        undefinableMessage =
            "Actual argument associated with VOLATILE %s is not definable"_warn_en_US;
      }
    }
    if (undefinableMessage) {
      if (isElemental) { // 15.5.2.4(21)
        flags.set(DefinabilityFlag::VectorSubscriptIsOk);
      }
      if (actualIsPointer && dummyIsPointer) { // 19.6.8
        flags.set(DefinabilityFlag::PointerDefinition);
      }
      if (auto whyNot{WhyNotDefinable(messages.at(), *scope, flags, actual)}) {
        if (whyNot->IsFatal()) {
          if (auto *msg{messages.Say(*undefinableMessage, dummyName)}) {
            if (!msg->IsFatal()) {
              msg->set_languageFeature(common::LanguageFeature::
                      UndefinableAsynchronousOrVolatileActual);
            }
            msg->Attach(
                std::move(whyNot->set_severity(parser::Severity::Because)));
          }
        } else {
          messages.Say(std::move(*whyNot));
        }
      }
    } else if (dummy.intent != common::Intent::In ||
        (dummyIsPointer && !actualIsPointer)) {
      if (auto named{evaluate::ExtractNamedEntity(actual)}) {
        if (const Symbol & base{named->GetFirstSymbol()};
            IsFunctionResult(base)) {
          context.NoteDefinedSymbol(base);
        }
      }
    }
  }

  bool dummyIsContiguous{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Contiguous)};
  bool actualIsContiguous{IsSimplyContiguous(actual, foldingContext)};

  // Cases when temporaries might be needed but must not be permitted.
  bool dummyIsAssumedShape{dummy.type.attrs().test(
      characteristics::TypeAndShape::Attr::AssumedShape)};
  if ((actualIsAsynchronous || actualIsVolatile) &&
      (dummyIsAsynchronous || dummyIsVolatile) && !dummyIsValue) {
    if (actualCoarrayRef) { // C1538
      messages.Say(
          "Coindexed ASYNCHRONOUS or VOLATILE actual argument may not be associated with %s with ASYNCHRONOUS or VOLATILE attributes unless VALUE"_err_en_US,
          dummyName);
    }
    if ((actualRank > 0 || actualIsAssumedRank) && !actualIsContiguous) {
      if (dummyIsContiguous ||
          !(dummyIsAssumedShape || dummyIsAssumedRank ||
              (actualIsPointer && dummyIsPointer))) { // C1539 & C1540
        messages.Say(
            "ASYNCHRONOUS or VOLATILE actual argument that is not simply contiguous may not be associated with a contiguous ASYNCHRONOUS or VOLATILE %s"_err_en_US,
            dummyName);
      }
    }
  }

  // 15.5.2.6 -- dummy is ALLOCATABLE
  bool dummyIsOptional{
      dummy.attrs.test(characteristics::DummyDataObject::Attr::Optional)};
  if (dummyIsAllocatable) {
    if (actualIsAllocatable) {
      if (actualCoarrayRef && dummy.intent != common::Intent::In) {
        messages.Say(
            "ALLOCATABLE %s must have INTENT(IN) to be associated with a coindexed actual argument"_err_en_US,
            dummyName);
      }
      if (!actualCoarrayRef && actualLastSymbol && dummy.type.corank() == 0 &&
          actualLastSymbol->Corank() > 0) {
        messages.Say(
            "ALLOCATABLE %s is not a coarray but actual argument has corank %d"_err_en_US,
            dummyName, actualLastSymbol->Corank());
      }
    } else if (evaluate::IsBareNullPointer(&actual)) {
      if (dummyIsOptional) {
      } else if (dummy.intent == common::Intent::Default &&
          context.ShouldWarn(
              common::UsageWarning::NullActualForDefaultIntentAllocatable)) {
        messages.Say(
            "A null pointer should not be associated with allocatable %s without INTENT(IN)"_warn_en_US,
            dummyName);
      } else if (dummy.intent == common::Intent::In &&
          context.ShouldWarn(
              common::LanguageFeature::NullActualForAllocatable)) {
        messages.Say(common::LanguageFeature::NullActualForAllocatable,
            "Allocatable %s is associated with a null pointer"_port_en_US,
            dummyName);
      }
      // INTENT(OUT) and INTENT(IN OUT) cases are caught elsewhere as being
      // undefinable actual arguments.
    } else if (evaluate::IsNullAllocatable(&actual)) {
      if (dummyIsOptional) {
      } else if (dummy.intent == common::Intent::Default &&
          context.ShouldWarn(
              common::UsageWarning::NullActualForDefaultIntentAllocatable)) {
        messages.Say(
            "A null allocatable should not be associated with allocatable %s without INTENT(IN)"_warn_en_US,
            dummyName);
      }
      // INTENT(OUT) and INTENT(IN OUT) cases are caught elsewhere
    } else {
      messages.Say(
          "ALLOCATABLE %s must be associated with an ALLOCATABLE actual argument"_err_en_US,
          dummyName);
    }
  }

  // 15.5.2.7 -- dummy is POINTER
  if (dummyIsPointer) {
    if (actualIsPointer || dummy.intent == common::Intent::In) {
      if (scope) {
        semantics::CheckPointerAssignment(context, messages.at(), dummyName,
            dummy, actual, *scope,
            /*isAssumedRank=*/dummyIsAssumedRank, actualIsPointer);
      }
    } else if (!actualIsPointer) {
      messages.Say(
          "Actual argument associated with POINTER %s must also be POINTER unless INTENT(IN)"_err_en_US,
          dummyName);
    }
  }

  // 15.5.2.5 -- actual & dummy are both POINTER or both ALLOCATABLE
  // For INTENT(IN), and for a polymorphic actual being associated with a
  // monomorphic dummy, we relax two checks that are in Fortran to
  // prevent the callee from changing the type or to avoid having
  // to use a descriptor.
  if (!typesCompatible) {
    // Don't pile on the errors emitted above
  } else if ((actualIsPointer && dummyIsPointer) ||
      (actualIsAllocatable && dummyIsAllocatable)) {
    bool actualIsUnlimited{actualType.type().IsUnlimitedPolymorphic()};
    bool dummyIsUnlimited{dummy.type.type().IsUnlimitedPolymorphic()};
    bool checkTypeCompatibility{true};
    if (actualIsUnlimited != dummyIsUnlimited) {
      checkTypeCompatibility = false;
      if (dummyIsUnlimited && dummy.intent == common::Intent::In &&
          context.IsEnabled(common::LanguageFeature::RelaxedIntentInChecking)) {
        if (context.ShouldWarn(
                common::LanguageFeature::RelaxedIntentInChecking)) {
          messages.Say(common::LanguageFeature::RelaxedIntentInChecking,
              "If a POINTER or ALLOCATABLE dummy or actual argument is unlimited polymorphic, both should be so"_port_en_US);
        }
      } else {
        messages.Say(
            "If a POINTER or ALLOCATABLE dummy or actual argument is unlimited polymorphic, both must be so"_err_en_US);
      }
    } else if (dummyIsPolymorphic != actualIsPolymorphic) {
      if (dummyIsPolymorphic && dummy.intent == common::Intent::In &&
          context.IsEnabled(common::LanguageFeature::RelaxedIntentInChecking)) {
        if (context.ShouldWarn(
                common::LanguageFeature::RelaxedIntentInChecking)) {
          messages.Say(common::LanguageFeature::RelaxedIntentInChecking,
              "If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both should be so"_port_en_US);
        }
      } else if (actualIsPolymorphic &&
          context.IsEnabled(common::LanguageFeature::
                  PolymorphicActualAllocatableOrPointerToMonomorphicDummy)) {
        if (context.ShouldWarn(common::LanguageFeature::
                    PolymorphicActualAllocatableOrPointerToMonomorphicDummy)) {
          messages.Say(
              common::LanguageFeature::
                  PolymorphicActualAllocatableOrPointerToMonomorphicDummy,
              "If a POINTER or ALLOCATABLE actual argument is polymorphic, the corresponding dummy argument should also be so"_port_en_US);
        }
      } else {
        checkTypeCompatibility = false;
        messages.Say(
            "If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both must be so"_err_en_US);
      }
    }
    if (checkTypeCompatibility && !actualIsUnlimited) {
      if (!actualType.type().IsTkCompatibleWith(dummy.type.type())) {
        if (dummy.intent == common::Intent::In &&
            context.IsEnabled(
                common::LanguageFeature::RelaxedIntentInChecking)) {
          if (context.ShouldWarn(
                  common::LanguageFeature::RelaxedIntentInChecking)) {
            messages.Say(common::LanguageFeature::RelaxedIntentInChecking,
                "POINTER or ALLOCATABLE dummy and actual arguments should have the same declared type and kind"_port_en_US);
          }
        } else {
          messages.Say(
              "POINTER or ALLOCATABLE dummy and actual arguments must have the same declared type and kind"_err_en_US);
        }
      }
      // 15.5.2.5(4)
      const auto *dummyDerived{evaluate::GetDerivedTypeSpec(dummy.type.type())};
      if (!DefersSameTypeParameters(actualDerived, dummyDerived) ||
          dummy.type.type().HasDeferredTypeParameter() !=
              actualType.type().HasDeferredTypeParameter()) {
        messages.Say(
            "Dummy and actual arguments must defer the same type parameters when POINTER or ALLOCATABLE"_err_en_US);
      }
    }
  }

  // 15.5.2.8 -- coarray dummy arguments
  if (dummy.type.corank() > 0) {
    if (actualType.corank() == 0) {
      messages.Say(
          "Actual argument associated with coarray %s must be a coarray"_err_en_US,
          dummyName);
    } else if (actualType.corank() != dummy.type.corank() &&
        dummyIsAllocatableOrPointer) {
      messages.Say(
          "ALLOCATABLE or POINTER %s has corank %d but actual argument has corank %d"_err_en_US,
          dummyName, dummy.type.corank(), actualType.corank());
    }
    if (dummyIsVolatile) {
      if (!actualIsVolatile) {
        messages.Say(
            "non-VOLATILE coarray may not be associated with VOLATILE coarray %s"_err_en_US,
            dummyName);
      }
    } else {
      if (actualIsVolatile) {
        messages.Say(
            "VOLATILE coarray may not be associated with non-VOLATILE coarray %s"_err_en_US,
            dummyName);
      }
    }
    if (actualRank == dummyRank && !actualIsContiguous) {
      if (dummyIsContiguous) {
        messages.Say(
            "Actual argument associated with a CONTIGUOUS coarray %s must be simply contiguous"_err_en_US,
            dummyName);
      } else if (!dummyIsAssumedShape && !dummyIsAssumedRank) {
        messages.Say(
            "Actual argument associated with coarray %s (not assumed shape or rank) must be simply contiguous"_err_en_US,
            dummyName);
      }
    }
  }

  // NULL(MOLD=) checking for non-intrinsic procedures
  if (!intrinsic && !dummyIsAllocatableOrPointer && !dummyIsOptional &&
      evaluate::IsNullPointer(&actual)) {
    messages.Say(
        "Actual argument associated with %s may not be null pointer %s"_err_en_US,
        dummyName, actual.AsFortran());
  }

  // Warn about dubious actual argument association with a TARGET dummy
  // argument
  if (dummy.attrs.test(characteristics::DummyDataObject::Attr::Target) &&
      context.ShouldWarn(common::UsageWarning::NonTargetPassedToTarget)) {
    bool actualIsVariable{evaluate::IsVariable(actual)};
    bool actualIsTemp{
        !actualIsVariable || HasVectorSubscript(actual) || actualCoarrayRef};
    if (actualIsTemp) {
      messages.Say(common::UsageWarning::NonTargetPassedToTarget,
          "Any pointer associated with TARGET %s during this call will not be associated with the value of '%s' afterwards"_warn_en_US,
          dummyName, actual.AsFortran());
    } else {
      auto actualSymbolVector{GetSymbolVector(actual)};
      if (!evaluate::GetLastTarget(actualSymbolVector)) {
        messages.Say(common::UsageWarning::NonTargetPassedToTarget,
            "Any pointer associated with TARGET %s during this call must not be used afterwards, as '%s' is not a target"_warn_en_US,
            dummyName, actual.AsFortran());
      }
    }
  }

  // CUDA specific checks
  // TODO: These are disabled in OpenACC constructs, which may not be
  // correct when the target is not a GPU.
  if (!intrinsic &&
      !dummy.attrs.test(characteristics::DummyDataObject::Attr::Value) &&
      !FindOpenACCConstructContaining(scope)) {
    std::optional<common::CUDADataAttr> actualDataAttr, dummyDataAttr;
    if (const auto *actualObject{actualLastSymbol
                ? actualLastSymbol->detailsIf<ObjectEntityDetails>()
                : nullptr}) {
      actualDataAttr = actualObject->cudaDataAttr();
    }
    dummyDataAttr = dummy.cudaDataAttr;
    // Treat MANAGED like DEVICE for nonallocatable nonpointer arguments to
    // device subprograms
    if (procedure.cudaSubprogramAttrs.value_or(
            common::CUDASubprogramAttrs::Host) !=
            common::CUDASubprogramAttrs::Host &&
        !dummy.attrs.test(
            characteristics::DummyDataObject::Attr::Allocatable) &&
        !dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer)) {
      if (!dummyDataAttr || *dummyDataAttr == common::CUDADataAttr::Managed) {
        dummyDataAttr = common::CUDADataAttr::Device;
      }
      if ((!actualDataAttr && FindCUDADeviceContext(scope)) ||
          (actualDataAttr &&
              *actualDataAttr == common::CUDADataAttr::Managed)) {
        actualDataAttr = common::CUDADataAttr::Device;
      }
      // For device procedures, treat actual arguments with VALUE attribute as
      // device data
      if (!actualDataAttr && actualLastSymbol && IsValue(*actualLastSymbol) &&
          (*procedure.cudaSubprogramAttrs ==
              common::CUDASubprogramAttrs::Device)) {
        actualDataAttr = common::CUDADataAttr::Device;
      }
    }
    if (dummyDataAttr == common::CUDADataAttr::Device &&
        (dummyIsAssumedShape || dummyIsAssumedRank) &&
        !dummy.ignoreTKR.test(common::IgnoreTKR::Contiguous)) {
      if (auto contig{evaluate::IsContiguous(actual, foldingContext,
              /*namedConstantSectionsAreContiguous=*/true,
              /*firstDimensionStride1=*/true)}) {
        if (!*contig) {
          messages.Say(
              "actual argument associated with assumed shape/rank device %s is known to be discontiguous on its first dimension"_err_en_US,
              dummyName);
        }
      } else {
        messages.Say(
            "actual argument associated with assumed shape/rank device %s is not known to be contiguous on its first dimension"_warn_en_US,
            dummyName);
      }
    }
    std::optional<std::string> warning;
    bool isHostDeviceProc{procedure.cudaSubprogramAttrs &&
        *procedure.cudaSubprogramAttrs ==
            common::CUDASubprogramAttrs::HostDevice};
    if (!common::AreCompatibleCUDADataAttrs(dummyDataAttr, actualDataAttr,
            dummy.ignoreTKR, &warning, /*allowUnifiedMatchingRule=*/true,
            isHostDeviceProc, &context.languageFeatures())) {
      auto toStr{[](std::optional<common::CUDADataAttr> x) {
        return x ? "ATTRIBUTES("s +
                parser::ToUpperCaseLetters(common::EnumToString(*x)) + ")"s
                 : "no CUDA data attribute"s;
      }};
      messages.Say(
          "%s has %s but its associated actual argument has %s"_err_en_US,
          dummyName, toStr(dummyDataAttr), toStr(actualDataAttr));
    }
    if (warning && context.ShouldWarn(common::UsageWarning::CUDAUsage)) {
      messages.Say(common::UsageWarning::CUDAUsage, "%s"_warn_en_US,
          std::move(*warning));
    }
  }

  // Warning for breaking F'2023 change with character allocatables
  if (intrinsic && dummy.intent != common::Intent::In) {
    WarnOnDeferredLengthCharacterScalar(
        context, &actual, messages.at(), dummyName.c_str());
  }

  // %VAL() and %REF() checking for explicit interface
  if ((arg.isPercentRef() || arg.isPercentVal()) &&
      dummy.IsPassedByDescriptor(procedure.IsBindC())) {
    messages.Say(
        "%%VAL or %%REF are not allowed for %s that must be passed by means of a descriptor"_err_en_US,
        dummyName);
  }
  if (arg.isPercentVal() &&
      (!actualType.type().IsLengthlessIntrinsicType() ||
          actualType.Rank() != 0)) {
    messages.Say(
        "%VAL argument must be a scalar numeric or logical expression"_err_en_US);
  }
}

static void CheckProcedureArg(evaluate::ActualArgument &arg,
    const characteristics::Procedure &proc,
    const characteristics::DummyProcedure &dummy, const std::string &dummyName,
    SemanticsContext &context, bool ignoreImplicitVsExplicit) {
  evaluate::FoldingContext &foldingContext{context.foldingContext()};
  parser::ContextualMessages &messages{foldingContext.messages()};
  parser::CharBlock location{arg.sourceLocation().value_or(messages.at())};
  auto restorer{messages.SetLocation(location)};
  const characteristics::Procedure &interface { dummy.procedure.value() };
  if (const auto *expr{arg.UnwrapExpr()}) {
    bool dummyIsPointer{
        dummy.attrs.test(characteristics::DummyProcedure::Attr::Pointer)};
    const auto *argProcDesignator{
        std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
    const auto *argProcSymbol{
        argProcDesignator ? argProcDesignator->GetSymbol() : nullptr};
    if (argProcSymbol) {
      if (const auto *subp{
              argProcSymbol->GetUltimate().detailsIf<SubprogramDetails>()}) {
        if (subp->stmtFunction()) {
          evaluate::SayWithDeclaration(messages, *argProcSymbol,
              "Statement function '%s' may not be passed as an actual argument"_err_en_US,
              argProcSymbol->name());
          return;
        }
      } else if (argProcSymbol->has<ProcBindingDetails>()) {
        if (!context.IsEnabled(common::LanguageFeature::BindingAsProcedure)) {
          evaluate::SayWithDeclaration(messages, *argProcSymbol,
              "Procedure binding '%s' passed as an actual argument"_err_en_US,
              argProcSymbol->name());
        } else if (context.ShouldWarn(
                       common::LanguageFeature::BindingAsProcedure)) {
          evaluate::SayWithDeclaration(messages, *argProcSymbol,
              common::LanguageFeature::BindingAsProcedure,
              "Procedure binding '%s' passed as an actual argument"_port_en_US,
              argProcSymbol->name());
        }
      }
    }
    if (auto argChars{characteristics::DummyArgument::FromActual(
            "actual argument", *expr, foldingContext,
            /*forImplicitInterface=*/true)}) {
      if (!argChars->IsTypelessIntrinsicDummy()) {
        if (auto *argProc{
                std::get_if<characteristics::DummyProcedure>(&argChars->u)}) {
          characteristics::Procedure &argInterface{argProc->procedure.value()};
          argInterface.attrs.reset(
              characteristics::Procedure::Attr::NullPointer);
          argInterface.attrs.reset(
              characteristics::Procedure::Attr::NullAllocatable);
          if (!argProcSymbol || argProcSymbol->attrs().test(Attr::INTRINSIC)) {
            // It's ok to pass ELEMENTAL unrestricted intrinsic functions.
            argInterface.attrs.reset(
                characteristics::Procedure::Attr::Elemental);
          } else if (argInterface.attrs.test(
                         characteristics::Procedure::Attr::Elemental)) {
            if (argProcSymbol) { // C1533
              evaluate::SayWithDeclaration(messages, *argProcSymbol,
                  "Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
                  argProcSymbol->name());
              return; // avoid piling on with checks below
            } else {
              argInterface.attrs.reset(
                  characteristics::Procedure::Attr::NullPointer);
              argInterface.attrs.reset(
                  characteristics::Procedure::Attr::NullAllocatable);
            }
          }
          if (interface.HasExplicitInterface()) {
            std::string whyNot;
            std::optional<std::string> warning;
            if (!interface.IsCompatibleWith(argInterface,
                    ignoreImplicitVsExplicit, &whyNot,
                    /*specificIntrinsic=*/nullptr, &warning)) {
              // 15.5.2.9(1): Explicit interfaces must match
              if (argInterface.HasExplicitInterface()) {
                messages.Say(
                    "Actual procedure argument has interface incompatible with %s: %s"_err_en_US,
                    dummyName, whyNot);
                return;
              } else if (proc.IsPure()) {
                messages.Say(
                    "Actual procedure argument for %s of a PURE procedure must have an explicit interface"_err_en_US,
                    dummyName);
              } else if (context.ShouldWarn(
                             common::UsageWarning::ImplicitInterfaceActual)) {
                messages.Say(common::UsageWarning::ImplicitInterfaceActual,
                    "Actual procedure argument has an implicit interface which is not known to be compatible with %s which has an explicit interface"_warn_en_US,
                    dummyName);
              }
            } else if (warning &&
                context.ShouldWarn(common::UsageWarning::ProcDummyArgShapes)) {
              messages.Say(common::UsageWarning::ProcDummyArgShapes,
                  "Actual procedure argument has possible interface incompatibility with %s: %s"_warn_en_US,
                  dummyName, std::move(*warning));
            }
          } else { // 15.5.2.9(2,3)
            if (interface.IsSubroutine() && argInterface.IsFunction()) {
              messages.Say(
                  "Actual argument associated with procedure %s is a function but must be a subroutine"_err_en_US,
                  dummyName);
            } else if (interface.IsFunction()) {
              if (argInterface.IsFunction()) {
                std::string whyNot;
                if (!interface.functionResult->IsCompatibleWith(
                        *argInterface.functionResult, &whyNot)) {
                  messages.Say(
                      "Actual argument function associated with procedure %s is not compatible: %s"_err_en_US,
                      dummyName, whyNot);
                }
              } else if (argInterface.IsSubroutine()) {
                messages.Say(
                    "Actual argument associated with procedure %s is a subroutine but must be a function"_err_en_US,
                    dummyName);
              }
            }
          }
        } else {
          messages.Say(
              "Actual argument associated with procedure %s is not a procedure"_err_en_US,
              dummyName);
        }
      } else if (IsNullPointer(expr)) {
        if (!dummyIsPointer &&
            !dummy.attrs.test(
                characteristics::DummyProcedure::Attr::Optional)) {
          messages.Say(
              "Actual argument associated with procedure %s is a null pointer"_err_en_US,
              dummyName);
        }
      } else {
        messages.Say(
            "Actual argument associated with procedure %s is typeless"_err_en_US,
            dummyName);
      }
    }
    if (dummyIsPointer) {
      if (dummy.intent == common::Intent::In) {
        // need not be definable, can be a target
      } else if (!IsProcedurePointer(*expr)) {
        messages.Say(
            "Actual argument associated with procedure pointer %s is not a procedure pointer"_err_en_US,
            dummyName);
      } else if (dummy.intent == common::Intent::Default) {
        // ok, needs to be definable only if defined at run time
      } else {
        DefinabilityFlags flags{DefinabilityFlag::PointerDefinition};
        if (dummy.intent != common::Intent::Out) {
          flags.set(DefinabilityFlag::DoNotNoteDefinition);
        }
        if (auto whyNot{WhyNotDefinable(
                location, context.FindScope(location), flags, *expr)}) {
          if (auto *msg{messages.Say(
                  "Actual argument associated with INTENT(%s) procedure pointer %s is not definable"_err_en_US,
                  dummy.intent == common::Intent::Out ? "OUT" : "IN OUT",
                  dummyName)}) {
            msg->Attach(
                std::move(whyNot->set_severity(parser::Severity::Because)));
          }
        }
      }
    }
  } else {
    messages.Say(
        "Assumed-type argument may not be forwarded as procedure %s"_err_en_US,
        dummyName);
  }
}

// Allow BOZ literal actual arguments when they can be converted to a known
// dummy argument type
static void ConvertBOZLiteralArg(
    evaluate::ActualArgument &arg, const evaluate::DynamicType &type) {
  if (auto *expr{arg.UnwrapExpr()}) {
    if (IsBOZLiteral(*expr)) {
      if (auto converted{evaluate::ConvertToType(type, SomeExpr{*expr})}) {
        arg = std::move(*converted);
      }
    }
  }
}

static void CheckExplicitInterfaceArg(evaluate::ActualArgument &arg,
    const characteristics::DummyArgument &dummy,
    const characteristics::Procedure &proc, SemanticsContext &context,
    const Scope *scope, const evaluate::SpecificIntrinsic *intrinsic,
    bool allowActualArgumentConversions, bool extentErrors,
    bool ignoreImplicitVsExplicit) {
  evaluate::FoldingContext &foldingContext{context.foldingContext()};
  auto &messages{foldingContext.messages()};
  std::string dummyName{"dummy argument"};
  if (!dummy.name.empty()) {
    dummyName += " '"s + parser::ToLowerCaseLetters(dummy.name) + "='";
  }
  auto restorer{
      messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
  auto CheckActualArgForLabel = [&](evaluate::ActualArgument &arg) {
    if (arg.isAlternateReturn()) {
      messages.Say(
          "Alternate return label '%d' cannot be associated with %s"_err_en_US,
          arg.GetLabel(), dummyName);
      return false;
    } else {
      return true;
    }
  };
  common::visit(
      common::visitors{
          [&](const characteristics::DummyDataObject &object) {
            if (CheckActualArgForLabel(arg)) {
              ConvertBOZLiteralArg(arg, object.type.type());
              if (auto *expr{arg.UnwrapExpr()}) {
                if (auto type{characteristics::TypeAndShape::Characterize(
                        *expr, foldingContext)}) {
                  arg.set_dummyIntent(object.intent);
                  bool isElemental{
                      object.type.Rank() == 0 && proc.IsElemental()};
                  CheckExplicitDataArg(object, dummyName, *expr, *type,
                      isElemental, context, foldingContext, scope, intrinsic,
                      allowActualArgumentConversions, extentErrors, proc, arg);
                } else if (object.type.type().IsTypelessIntrinsicArgument() &&
                    IsBOZLiteral(*expr)) {
                  // ok
                } else if (object.type.type().IsTypelessIntrinsicArgument() &&
                    evaluate::IsNullObjectPointer(expr)) {
                  // ok, ASSOCIATED(NULL(without MOLD=))
                } else if (object.type.attrs().test(characteristics::
                                   TypeAndShape::Attr::AssumedRank) &&
                    evaluate::IsNullObjectPointer(expr) &&
                    (object.attrs.test(
                         characteristics::DummyDataObject::Attr::Allocatable) ||
                        object.attrs.test(
                            characteristics::DummyDataObject::Attr::Pointer) ||
                        !object.attrs.test(characteristics::DummyDataObject::
                                Attr::Optional))) {
                  messages.Say(
                      "NULL() without MOLD= must not be associated with an assumed-rank dummy argument that is ALLOCATABLE, POINTER, or non-OPTIONAL"_err_en_US);
                } else if ((object.attrs.test(characteristics::DummyDataObject::
                                    Attr::Pointer) ||
                               object.attrs.test(characteristics::
                                       DummyDataObject::Attr::Optional)) &&
                    evaluate::IsNullObjectPointer(expr)) {
                  // FOO(NULL(without MOLD=))
                  if (object.type.type().IsAssumedLengthCharacter()) {
                    messages.Say(
                        "Actual argument associated with %s is a NULL() pointer without a MOLD= to provide a character length"_err_en_US,
                        dummyName);
                  } else if (const DerivedTypeSpec *
                      derived{GetDerivedTypeSpec(object.type.type())}) {
                    for (const auto &[pName, pValue] : derived->parameters()) {
                      if (pValue.isAssumed()) {
                        messages.Say(
                            "Actual argument associated with %s is a NULL() pointer without a MOLD= to provide a value for the assumed type parameter '%s'"_err_en_US,
                            dummyName, pName.ToString());
                        break;
                      }
                    }
                  }
                } else if (object.attrs.test(characteristics::DummyDataObject::
                                   Attr::Allocatable) &&
                    (evaluate::IsNullAllocatable(expr) ||
                        evaluate::IsBareNullPointer(expr))) {
                  if (object.intent == common::Intent::Out ||
                      object.intent == common::Intent::InOut) {
                    messages.Say(
                        "NULL() actual argument '%s' may not be associated with allocatable dummy argument %s that is INTENT(OUT) or INTENT(IN OUT)"_err_en_US,
                        expr->AsFortran(), dummyName);
                  } else if (object.intent == common::Intent::Default &&
                      context.ShouldWarn(common::UsageWarning::
                              NullActualForDefaultIntentAllocatable)) {
                    messages.Say(common::UsageWarning::
                                     NullActualForDefaultIntentAllocatable,
                        "NULL() actual argument '%s' should not be associated with allocatable dummy argument %s without INTENT(IN)"_warn_en_US,
                        expr->AsFortran(), dummyName);
                  } else if (context.ShouldWarn(common::LanguageFeature::
                                     NullActualForAllocatable)) {
                    messages.Say(
                        common::LanguageFeature::NullActualForAllocatable,
                        "Allocatable %s is associated with %s"_port_en_US,
                        dummyName, expr->AsFortran());
                  }
                } else {
                  messages.Say(
                      "Actual argument '%s' associated with %s is not a variable or typed expression"_err_en_US,
                      expr->AsFortran(), dummyName);
                }
              } else {
                const Symbol &assumed{DEREF(arg.GetAssumedTypeDummy())};
                if (!object.type.type().IsAssumedType()) {
                  messages.Say(
                      "Assumed-type '%s' may be associated only with an assumed-type %s"_err_en_US,
                      assumed.name(), dummyName);
                } else if (object.type.attrs().test(characteristics::
                                   TypeAndShape::Attr::AssumedRank) &&
                    !IsAssumedShape(assumed) &&
                    !evaluate::IsAssumedRank(assumed)) {
                  messages.Say( // C711
                      "Assumed-type '%s' must be either assumed shape or assumed rank to be associated with assumed rank %s"_err_en_US,
                      assumed.name(), dummyName);
                }
              }
            }
          },
          [&](const characteristics::DummyProcedure &dummy) {
            if (CheckActualArgForLabel(arg)) {
              CheckProcedureArg(arg, proc, dummy, dummyName, context,
                  ignoreImplicitVsExplicit);
            }
          },
          [&](const characteristics::AlternateReturn &) {
            // All semantic checking is done elsewhere
          },
      },
      dummy.u);
}

static void RearrangeArguments(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, parser::ContextualMessages &messages) {
  CHECK(proc.HasExplicitInterface());
  if (actuals.size() < proc.dummyArguments.size()) {
    actuals.resize(proc.dummyArguments.size());
  } else if (actuals.size() > proc.dummyArguments.size()) {
    messages.Say(
        "Too many actual arguments (%zd) passed to procedure that expects only %zd"_err_en_US,
        actuals.size(), proc.dummyArguments.size());
  }
  std::map<std::string, evaluate::ActualArgument> kwArgs;
  bool anyKeyword{false};
  int which{1};
  for (auto &x : actuals) {
    if (!x) {
    } else if (x->keyword()) {
      auto emplaced{
          kwArgs.try_emplace(x->keyword()->ToString(), std::move(*x))};
      if (!emplaced.second) {
        messages.Say(*x->keyword(),
            "Argument keyword '%s=' appears on more than one effective argument in this procedure reference"_err_en_US,
            *x->keyword());
      }
      x.reset();
      anyKeyword = true;
    } else if (anyKeyword) {
      messages.Say(x ? x->sourceLocation() : std::nullopt,
          "Actual argument #%d without a keyword may not follow any actual argument with a keyword"_err_en_US,
          which);
    }
    ++which;
  }
  if (!kwArgs.empty()) {
    int index{0};
    for (const auto &dummy : proc.dummyArguments) {
      if (!dummy.name.empty()) {
        auto iter{kwArgs.find(dummy.name)};
        if (iter != kwArgs.end()) {
          evaluate::ActualArgument &x{iter->second};
          if (actuals[index]) {
            messages.Say(*x.keyword(),
                "Keyword argument '%s=' has already been specified positionally (#%d) in this procedure reference"_err_en_US,
                *x.keyword(), index + 1);
          } else {
            actuals[index] = std::move(x);
          }
          kwArgs.erase(iter);
        }
      }
      ++index;
    }
    for (auto &bad : kwArgs) {
      evaluate::ActualArgument &x{bad.second};
      messages.Say(*x.keyword(),
          "Argument keyword '%s=' is not recognized for this procedure reference"_err_en_US,
          *x.keyword());
    }
  }
}

// 15.8.1(3) -- In a reference to an elemental procedure, if any argument is an
// array, each actual argument that corresponds to an INTENT(OUT) or
// INTENT(INOUT) dummy argument shall be an array. The actual argument to an
// ELEMENTAL procedure must conform.
static bool CheckElementalConformance(parser::ContextualMessages &messages,
    const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
    evaluate::FoldingContext &context) {
  std::optional<evaluate::Shape> shape;
  std::string shapeName;
  int index{0};
  bool hasArrayArg{false};
  for (const auto &arg : actuals) {
    if (arg && !arg->isAlternateReturn() && arg->Rank() > 0) {
      hasArrayArg = true;
      break;
    }
  }
  for (const auto &arg : actuals) {
    const auto &dummy{proc.dummyArguments.at(index++)};
    if (arg) {
      if (const auto *expr{arg->UnwrapExpr()}) {
        if (const auto *wholeSymbol{evaluate::UnwrapWholeSymbolDataRef(arg)}) {
          wholeSymbol = &ResolveAssociations(*wholeSymbol);
          if (IsAssumedSizeArray(*wholeSymbol)) {
            evaluate::SayWithDeclaration(messages, *wholeSymbol,
                "Whole assumed-size array '%s' may not be used as an argument to an elemental procedure"_err_en_US,
                wholeSymbol->name());
          }
        }
        if (auto argShape{evaluate::GetShape(context, *expr)}) {
          if (GetRank(*argShape) > 0) {
            std::string argName{"actual argument ("s + expr->AsFortran() +
                ") corresponding to dummy argument #" + std::to_string(index) +
                " ('" + dummy.name + "')"};
            if (shape) {
              auto tristate{evaluate::CheckConformance(messages, *shape,
                  *argShape, evaluate::CheckConformanceFlags::None,
                  shapeName.c_str(), argName.c_str())};
              if (tristate && !*tristate) {
                return false;
              }
            } else {
              shape = std::move(argShape);
              shapeName = argName;
            }
          } else if ((dummy.GetIntent() == common::Intent::Out ||
                         dummy.GetIntent() == common::Intent::InOut) &&
              hasArrayArg) {
            messages.Say(
                "In an elemental procedure reference with at least one array argument, actual argument %s that corresponds to an INTENT(OUT) or INTENT(INOUT) dummy argument must be an array"_err_en_US,
                expr->AsFortran());
          }
        }
      }
    }
  }
  return true;
}

// ASSOCIATED (16.9.16)
static void CheckAssociated(evaluate::ActualArguments &arguments,
    SemanticsContext &semanticsContext, const Scope *scope) {
  evaluate::FoldingContext &foldingContext{semanticsContext.foldingContext()};
  parser::ContextualMessages &messages{foldingContext.messages()};
  bool ok{true};
  if (arguments.size() < 2) {
    return;
  }
  if (const auto &pointerArg{arguments[0]}) {
    if (const auto *pointerExpr{pointerArg->UnwrapExpr()}) {
      if (!IsPointer(*pointerExpr)) {
        messages.Say(pointerArg->sourceLocation(),
            "POINTER= argument of ASSOCIATED() must be a pointer"_err_en_US);
        return;
      }
      if (const auto &targetArg{arguments[1]}) {
        // The standard requires that the TARGET= argument, when present,
        // be type compatible with the POINTER= for a data pointer.  In
        // the case of procedure pointers, the standard requires that it
        // be a valid RHS for a pointer assignment that has the POINTER=
        // argument as its LHS.  Some popular compilers misinterpret this
        // requirement more strongly than necessary, and actually validate
        // the POINTER= argument as if it were serving as the LHS of a pointer
        // assignment.  This, perhaps unintentionally, excludes function
        // results, including NULL(), from being used there, as well as
        // INTENT(IN) dummy pointers.  Detect these conditions and emit
        // portability warnings.
        if (semanticsContext.ShouldWarn(common::UsageWarning::Portability)) {
          if (!evaluate::ExtractDataRef(*pointerExpr) &&
              !evaluate::IsProcedurePointer(*pointerExpr)) {
            messages.Say(common::UsageWarning::Portability,
                pointerArg->sourceLocation(),
                "POINTER= argument of ASSOCIATED() is required by some other compilers to be a pointer"_port_en_US);
          } else if (scope && !evaluate::UnwrapProcedureRef(*pointerExpr)) {
            if (auto whyNot{WhyNotDefinable(
                    pointerArg->sourceLocation().value_or(messages.at()),
                    *scope,
                    DefinabilityFlags{DefinabilityFlag::PointerDefinition,
                        DefinabilityFlag::DoNotNoteDefinition},
                    *pointerExpr)}) {
              if (whyNot->IsFatal()) {
                if (auto *msg{messages.Say(common::UsageWarning::Portability,
                        pointerArg->sourceLocation(),
                        "POINTER= argument of ASSOCIATED() is required by some other compilers to be a valid left-hand side of a pointer assignment statement"_port_en_US)}) {
                  msg->Attach(std::move(
                      whyNot->set_severity(parser::Severity::Because)));
                }
              } else {
                messages.Say(std::move(*whyNot));
              }
            }
          }
        }
        if (const auto *targetExpr{targetArg->UnwrapExpr()}) {
          if (IsProcedurePointer(*pointerExpr) &&
              !IsBareNullPointer(pointerExpr)) { // POINTER= is a procedure
            if (auto pointerProc{characteristics::Procedure::Characterize(
                    *pointerExpr, foldingContext)}) {
              if (IsBareNullPointer(targetExpr)) {
              } else if (IsProcedurePointerTarget(*targetExpr)) {
                if (auto targetProc{characteristics::Procedure::Characterize(
                        *targetExpr, foldingContext)}) {
                  bool isCall{!!UnwrapProcedureRef(*targetExpr)};
                  std::string whyNot;
                  std::optional<std::string> warning;
                  const auto *targetProcDesignator{
                      evaluate::UnwrapExpr<evaluate::ProcedureDesignator>(
                          *targetExpr)};
                  const evaluate::SpecificIntrinsic *specificIntrinsic{
                      targetProcDesignator
                          ? targetProcDesignator->GetSpecificIntrinsic()
                          : nullptr};
                  std::optional<parser::MessageFixedText> msg{
                      CheckProcCompatibility(isCall, pointerProc, &*targetProc,
                          specificIntrinsic, whyNot, warning,
                          /*ignoreImplicitVsExplicit=*/false)};
                  std::optional<common::UsageWarning> whichWarning;
                  if (!msg && warning &&
                      semanticsContext.ShouldWarn(
                          common::UsageWarning::ProcDummyArgShapes)) {
                    whichWarning = common::UsageWarning::ProcDummyArgShapes;
                    msg =
                        "Procedures '%s' and '%s' may not be completely compatible: %s"_warn_en_US;
                    whyNot = std::move(*warning);
                  } else if (msg && !msg->IsFatal() &&
                      semanticsContext.ShouldWarn(
                          common::UsageWarning::ProcPointerCompatibility)) {
                    whichWarning =
                        common::UsageWarning::ProcPointerCompatibility;
                  }
                  if (msg && (msg->IsFatal() || whichWarning)) {
                    if (auto *said{messages.Say(std::move(*msg),
                            "pointer '" + pointerExpr->AsFortran() + "'",
                            targetExpr->AsFortran(), whyNot)};
                        said && whichWarning) {
                      said->set_usageWarning(*whichWarning);
                    }
                  }
                }
              } else if (!IsNullProcedurePointer(targetExpr)) {
                messages.Say(
                    "POINTER= argument '%s' is a procedure pointer but the TARGET= argument '%s' is not a procedure or procedure pointer"_err_en_US,
                    pointerExpr->AsFortran(), targetExpr->AsFortran());
              }
            }
          } else if (IsVariable(*targetExpr) || IsNullPointer(targetExpr)) {
            // Object pointer and target
            if (ExtractDataRef(*targetExpr)) {
              if (SymbolVector symbols{GetSymbolVector(*targetExpr)};
                  !evaluate::GetLastTarget(symbols)) {
                parser::Message *msg{messages.Say(targetArg->sourceLocation(),
                    "TARGET= argument '%s' must have either the POINTER or the TARGET attribute"_err_en_US,
                    targetExpr->AsFortran())};
                for (SymbolRef ref : symbols) {
                  msg = evaluate::AttachDeclaration(msg, *ref);
                }
              } else if (HasVectorSubscript(*targetExpr) ||
                  ExtractCoarrayRef(*targetExpr)) {
                messages.Say(targetArg->sourceLocation(),
                    "TARGET= argument '%s' may not have a vector subscript or coindexing"_err_en_US,
                    targetExpr->AsFortran());
              }
            }
            if (const auto pointerType{pointerArg->GetType()}) {
              if (const auto targetType{targetArg->GetType()}) {
                ok = pointerType->IsTkCompatibleWith(*targetType) ||
                    targetType->IsTkCompatibleWith(*pointerType);
              }
            }
          } else {
            messages.Say(
                "POINTER= argument '%s' is an object pointer but the TARGET= argument '%s' is not a variable"_err_en_US,
                pointerExpr->AsFortran(), targetExpr->AsFortran());
          }
          if (!IsAssumedRank(*pointerExpr)) {
            if (IsAssumedRank(*targetExpr)) {
              messages.Say(
                  "TARGET= argument '%s' may not be assumed-rank when POINTER= argument is not"_err_en_US,
                  pointerExpr->AsFortran());
            } else if (pointerExpr->Rank() != targetExpr->Rank()) {
              messages.Say(
                  "POINTER= argument and TARGET= argument have incompatible ranks %d and %d"_err_en_US,
                  pointerExpr->Rank(), targetExpr->Rank());
            }
          }
        }
      }
    }
  } else {
    // No arguments to ASSOCIATED()
    ok = false;
  }
  if (!ok) {
    messages.Say(
        "Arguments of ASSOCIATED() must be a pointer and an optional valid target"_err_en_US);
  }
}

// CO_REDUCE (F'2023 16.9.49)
static void CheckCoReduce(
    evaluate::ActualArguments &arguments, evaluate::FoldingContext &context) {
  parser::ContextualMessages &messages{context.messages()};
  evaluate::CheckForCoindexedObject(
      context.messages(), arguments[0], "co_reduce", "a");
  evaluate::CheckForCoindexedObject(
      context.messages(), arguments[2], "co_reduce", "stat");
  evaluate::CheckForCoindexedObject(
      context.messages(), arguments[3], "co_reduce", "errmsg");

  std::optional<evaluate::DynamicType> aType;
  if (const auto &a{arguments[0]}) {
    aType = a->GetType();
  }
  std::optional<characteristics::Procedure> procChars;
  if (const auto &operation{arguments[1]}) {
    if (const auto *expr{operation->UnwrapExpr()}) {
      if (const auto *designator{
              std::get_if<evaluate::ProcedureDesignator>(&expr->u)}) {
        procChars = characteristics::Procedure::Characterize(
            *designator, context, /*emitError=*/true);
      } else if (const auto *ref{
                     std::get_if<evaluate::ProcedureRef>(&expr->u)}) {
        procChars = characteristics::Procedure::Characterize(*ref, context);
      }
    }
  }

  static constexpr characteristics::DummyDataObject::Attrs notAllowedArgAttrs{
      characteristics::DummyDataObject::Attr::Optional,
      characteristics::DummyDataObject::Attr::Allocatable,
      characteristics::DummyDataObject::Attr::Pointer,
  };
  static constexpr characteristics::FunctionResult::Attrs
      notAllowedFuncResAttrs{
          characteristics::FunctionResult::Attr::Allocatable,
          characteristics::FunctionResult::Attr::Pointer,
      };
  const characteristics::TypeAndShape *result{
      procChars && procChars->functionResult
          ? procChars->functionResult->GetTypeAndShape()
          : nullptr};
  if (!procChars || !procChars->IsPure() ||
      procChars->dummyArguments.size() != 2 || !procChars->functionResult) {
    messages.Say(
        "OPERATION= argument of CO_REDUCE() must be a pure function of two data arguments"_err_en_US);
  } else if (procChars->attrs.test(characteristics::Procedure::Attr::BindC)) {
    messages.Say(
        "A BIND(C) OPERATION= argument of CO_REDUCE() is not supported"_err_en_US);
  } else if (!result || result->Rank() != 0) {
    messages.Say(
        "OPERATION= argument of CO_REDUCE() must be a scalar function"_err_en_US);
  } else if (result->type().IsPolymorphic() ||
      (aType && !aType->IsTkLenCompatibleWith(result->type()))) {
    messages.Say(
        "OPERATION= argument of CO_REDUCE() must have the same type as A="_err_en_US);
  } else if (((procChars->functionResult->attrs & notAllowedFuncResAttrs) !=
                 characteristics::FunctionResult::Attrs{}) ||
      procChars->functionResult->GetTypeAndShape()->type().IsPolymorphic()) {
    messages.Say(
        "Result of OPERATION= procedure of CO_REDUCE() must be scalar and neither allocatable, pointer, nor polymorphic"_err_en_US);
  } else {
    const characteristics::DummyDataObject *data[2]{};
    for (int j{0}; j < 2; ++j) {
      const auto &dummy{procChars->dummyArguments.at(j)};
      data[j] = std::get_if<characteristics::DummyDataObject>(&dummy.u);
    }
    if (!data[0] || !data[1]) {
      messages.Say(
          "OPERATION= argument of CO_REDUCE() may not have dummy procedure arguments"_err_en_US);
    } else {
      for (int j{0}; j < 2; ++j) {
        if (((data[j]->attrs & notAllowedArgAttrs) !=
                characteristics::DummyDataObject::Attrs{}) ||
            data[j]->type.Rank() != 0 || data[j]->type.type().IsPolymorphic() ||
            (aType && !data[j]->type.type().IsTkCompatibleWith(*aType))) {
          messages.Say(
              "Arguments of OPERATION= procedure of CO_REDUCE() must be both scalar of the same type as A=, and neither allocatable, pointer, polymorphic, nor optional"_err_en_US);
          break;
        }
      }
      static constexpr characteristics::DummyDataObject::Attrs attrs{
          characteristics::DummyDataObject::Attr::Asynchronous,
          characteristics::DummyDataObject::Attr::Target,
          characteristics::DummyDataObject::Attr::Value,
      };
      if ((data[0]->attrs & attrs) != (data[1]->attrs & attrs)) {
        messages.Say(
            "If either argument of the OPERATION= procedure of CO_REDUCE() has the ASYNCHRONOUS, TARGET, or VALUE attribute, both must have that attribute"_err_en_US);
      }
    }
  }
}

// EVENT_QUERY (F'2023 16.9.82)
static void CheckEvent_Query(evaluate::ActualArguments &arguments,
    evaluate::FoldingContext &foldingContext) {
  if (arguments.size() > 0 && arguments[0] &&
      ExtractCoarrayRef(*arguments[0]).has_value()) {
    foldingContext.messages().Say(arguments[0]->sourceLocation(),
        "EVENT= argument to EVENT_QUERY must not be coindexed"_err_en_US);
  }
  if (arguments.size() > 1 && arguments[1]) {
    if (auto dyType{arguments[1]->GetType()}) {
      int defaultInt{
          foldingContext.defaults().GetDefaultKind(TypeCategory::Integer)};
      if (dyType->category() == TypeCategory::Integer &&
          dyType->kind() < defaultInt) {
        foldingContext.messages().Say(arguments[1]->sourceLocation(),
            "COUNT= argument to EVENT_QUERY must be an integer with kind >= %d"_err_en_US,
            defaultInt);
      }
    }
  }
  if (arguments.size() > 2 && arguments[2]) {
    if (auto dyType{arguments[2]->GetType()}) {
      if (dyType->category() == TypeCategory::Integer && dyType->kind() < 2) {
        foldingContext.messages().Say(arguments[2]->sourceLocation(),
            "STAT= argument to EVENT_QUERY must be an integer with kind >= 2 when present"_err_en_US);
      }
    }
  }
}

// IMAGE_INDEX (F'2023 16.9.107)
static void CheckImage_Index(evaluate::ActualArguments &arguments,
    parser::ContextualMessages &messages) {
  if (arguments[1] && arguments[0]) {
    if (const auto subArrShape{
            evaluate::GetShape(arguments[1]->UnwrapExpr())}) {
      if (const auto *coarrayArgSymbol{UnwrapWholeSymbolOrComponentDataRef(
              arguments[0]->UnwrapExpr())}) {
        auto coarrayArgCorank{coarrayArgSymbol->Corank()};
        if (auto subArrSize{evaluate::ToInt64(*subArrShape->front())}) {
          if (subArrSize != coarrayArgCorank) {
            messages.Say(arguments[1]->sourceLocation(),
                "The size of 'SUB=' (%jd) for intrinsic 'image_index' must be equal to the corank of 'COARRAY=' (%d)"_err_en_US,
                static_cast<std::int64_t>(*subArrSize), coarrayArgCorank);
          }
        }
      }
    }
  }
}

// Ensure that any optional argument that might be absent at run time
// does not require data conversion.
static void CheckMaxMin(const characteristics::Procedure &proc,
    evaluate::ActualArguments &arguments,
    parser::ContextualMessages &messages) {
  if (proc.functionResult) {
    if (const auto *typeAndShape{proc.functionResult->GetTypeAndShape()}) {
      for (std::size_t j{2}; j < arguments.size(); ++j) {
        if (arguments[j]) {
          if (const auto *expr{arguments[j]->UnwrapExpr()};
              expr && evaluate::MayBePassedAsAbsentOptional(*expr)) {
            if (auto thisType{expr->GetType()}) {
              if (thisType->category() == TypeCategory::Character &&
                  typeAndShape->type().category() == TypeCategory::Character &&
                  thisType->kind() == typeAndShape->type().kind()) {
                // don't care about lengths
              } else if (*thisType != typeAndShape->type()) {
                messages.Say(arguments[j]->sourceLocation(),
                    "An actual argument to MAX/MIN requiring data conversion may not be OPTIONAL, POINTER, or ALLOCATABLE"_err_en_US);
              }
            }
          }
        }
      }
    }
  }
}

static void CheckFree(evaluate::ActualArguments &arguments,
    parser::ContextualMessages &messages) {
  if (arguments.size() != 1) {
    messages.Say("FREE expects a single argument"_err_en_US);
  }
  auto arg = arguments[0];
  if (const Symbol * symbol{evaluate::UnwrapWholeSymbolDataRef(arg)};
      !symbol || !symbol->test(Symbol::Flag::CrayPointer)) {
    messages.Say("FREE should only be used with Cray pointers"_warn_en_US);
  }
}

// MOVE_ALLOC (F'2023 16.9.147)
static void CheckMove_Alloc(evaluate::ActualArguments &arguments,
    parser::ContextualMessages &messages) {
  if (arguments.size() >= 1) {
    evaluate::CheckForCoindexedObject(
        messages, arguments[0], "move_alloc", "from");
  }
  if (arguments.size() >= 2) {
    evaluate::CheckForCoindexedObject(
        messages, arguments[1], "move_alloc", "to");
    int fromCR{GetCorank(arguments[0])};
    int toCR{GetCorank(arguments[1])};
    if (fromCR != toCR) {
      messages.Say(*arguments[0]->sourceLocation(),
          "FROM= argument to MOVE_ALLOC has corank %d, but TO= argument has corank %d"_err_en_US,
          fromCR, toCR);
    }
  }
  if (arguments.size() >= 3) {
    evaluate::CheckForCoindexedObject(
        messages, arguments[2], "move_alloc", "stat");
  }
  if (arguments.size() >= 4) {
    evaluate::CheckForCoindexedObject(
        messages, arguments[3], "move_alloc", "errmsg");
  }
  if (arguments.size() >= 2 && arguments[0] && arguments[1]) {
    for (int j{0}; j < 2; ++j) {
      if (const Symbol *
              whole{UnwrapWholeSymbolOrComponentDataRef(arguments[j])};
          !whole || !IsAllocatable(whole->GetUltimate())) {
        messages.Say(*arguments[j]->sourceLocation(),
            "Argument #%d to MOVE_ALLOC must be allocatable"_err_en_US, j + 1);
      }
    }
    auto type0{arguments[0]->GetType()};
    auto type1{arguments[1]->GetType()};
    if (type0 && type1 && type0->IsPolymorphic() && !type1->IsPolymorphic()) {
      messages.Say(arguments[1]->sourceLocation(),
          "When MOVE_ALLOC(FROM=) is polymorphic, TO= must also be polymorphic"_err_en_US);
    }
  }
}

// PRESENT (F'2023 16.9.163)
static void CheckPresent(evaluate::ActualArguments &arguments,
    parser::ContextualMessages &messages) {
  if (arguments.size() == 1) {
    if (const auto &arg{arguments[0]}; arg) {
      const Symbol *symbol{nullptr};
      if (const auto *expr{arg->UnwrapExpr()}) {
        if (const auto *proc{
                std::get_if<evaluate::ProcedureDesignator>(&expr->u)}) {
          symbol = proc->GetSymbol();
        } else {
          symbol = evaluate::UnwrapWholeSymbolDataRef(*expr);
        }
      } else {
        symbol = arg->GetAssumedTypeDummy();
      }
      if (!symbol ||
          !symbol->GetUltimate().attrs().test(semantics::Attr::OPTIONAL)) {
        messages.Say(arg ? arg->sourceLocation() : messages.at(),
            "Argument of PRESENT() must be the name of a whole OPTIONAL dummy argument"_err_en_US);
      }
    }
  }
}

// REDUCE (F'2023 16.9.173)
static void CheckReduce(
    evaluate::ActualArguments &arguments, evaluate::FoldingContext &context) {
  std::optional<evaluate::DynamicType> arrayType;
  parser::ContextualMessages &messages{context.messages()};
  if (const auto &array{arguments[0]}) {
    arrayType = array->GetType();
    if (!arguments[/*identity=*/4]) {
      if (const auto *expr{array->UnwrapExpr()}) {
        if (auto shape{
                evaluate::GetShape(context, *expr, /*invariantOnly=*/false)}) {
          if (const auto &dim{arguments[2]}; dim && array->Rank() > 1) {
            // Partial reduction
            auto dimVal{evaluate::ToInt64(dim->UnwrapExpr())};
            std::int64_t j{0};
            int zeroDims{0};
            bool isSelectedDimEmpty{false};
            for (const auto &extent : *shape) {
              ++j;
              if (evaluate::ToInt64(extent) == 0) {
                ++zeroDims;
                isSelectedDimEmpty |= dimVal && j == *dimVal;
              }
            }
            if (isSelectedDimEmpty && zeroDims == 1) {
              messages.Say(
                  "IDENTITY= must be present when DIM=%d and the array has zero extent on that dimension"_err_en_US,
                  static_cast<int>(dimVal.value()));
            }
          } else { // no DIM= or DIM=1 on a vector: total reduction
            for (const auto &extent : *shape) {
              if (evaluate::ToInt64(extent) == 0) {
                messages.Say(
                    "IDENTITY= must be present when the array is empty and the result is scalar"_err_en_US);
                break;
              }
            }
          }
        }
      }
    }
  }
  std::optional<characteristics::Procedure> procChars;
  if (const auto &operation{arguments[1]}) {
    if (const auto *expr{operation->UnwrapExpr()}) {
      if (const auto *designator{
              std::get_if<evaluate::ProcedureDesignator>(&expr->u)}) {
        procChars = characteristics::Procedure::Characterize(
            *designator, context, /*emitError=*/true);
      } else if (const auto *ref{
                     std::get_if<evaluate::ProcedureRef>(&expr->u)}) {
        procChars = characteristics::Procedure::Characterize(*ref, context);
      }
    }
  }
  const auto *result{
      procChars ? procChars->functionResult->GetTypeAndShape() : nullptr};
  if (!procChars || !procChars->IsPure() ||
      procChars->dummyArguments.size() != 2 || !procChars->functionResult) {
    messages.Say(
        "OPERATION= argument of REDUCE() must be a pure function of two data arguments"_err_en_US);
  } else if (procChars->attrs.test(characteristics::Procedure::Attr::BindC)) {
    messages.Say(
        "A BIND(C) OPERATION= argument of REDUCE() is not supported"_err_en_US);
  } else if (!result || result->Rank() != 0) {
    messages.Say(
        "OPERATION= argument of REDUCE() must be a scalar function"_err_en_US);
  } else if (result->type().IsPolymorphic() ||
      (arrayType && !arrayType->IsTkLenCompatibleWith(result->type()))) {
    messages.Say(
        "OPERATION= argument of REDUCE() must have the same type as ARRAY="_err_en_US);
  } else {
    const characteristics::DummyDataObject *data[2]{};
    for (int j{0}; j < 2; ++j) {
      const auto &dummy{procChars->dummyArguments.at(j)};
      data[j] = std::get_if<characteristics::DummyDataObject>(&dummy.u);
    }
    if (!data[0] || !data[1]) {
      messages.Say(
          "OPERATION= argument of REDUCE() may not have dummy procedure arguments"_err_en_US);
    } else {
      for (int j{0}; j < 2; ++j) {
        if (data[j]->attrs.test(
                characteristics::DummyDataObject::Attr::Optional) ||
            data[j]->attrs.test(
                characteristics::DummyDataObject::Attr::Allocatable) ||
            data[j]->attrs.test(
                characteristics::DummyDataObject::Attr::Pointer) ||
            data[j]->type.Rank() != 0 || data[j]->type.type().IsPolymorphic() ||
            (arrayType &&
                !data[j]->type.type().IsTkCompatibleWith(*arrayType))) {
          messages.Say(
              "Arguments of OPERATION= procedure of REDUCE() must be both scalar of the same type as ARRAY=, and neither allocatable, pointer, polymorphic, nor optional"_err_en_US);
        }
      }
      static constexpr characteristics::DummyDataObject::Attr attrs[]{
          characteristics::DummyDataObject::Attr::Asynchronous,
          characteristics::DummyDataObject::Attr::Target,
          characteristics::DummyDataObject::Attr::Value,
      };
      for (std::size_t j{0}; j < sizeof attrs / sizeof *attrs; ++j) {
        if (data[0]->attrs.test(attrs[j]) != data[1]->attrs.test(attrs[j])) {
          messages.Say(
              "If either argument of the OPERATION= procedure of REDUCE() has the ASYNCHRONOUS, TARGET, or VALUE attribute, both must have that attribute"_err_en_US);
          break;
        }
      }
    }
  }
  // When the MASK= is present and has no .TRUE. element, and there is
  // no IDENTITY=, it's an error.
  if (const auto &mask{arguments[3]}; mask && !arguments[/*identity*/ 4]) {
    if (const auto *expr{mask->UnwrapExpr()}) {
      if (const auto *logical{
              std::get_if<evaluate::Expr<evaluate::SomeLogical>>(&expr->u)}) {
        if (common::visit(
                [](const auto &kindExpr) {
                  using KindExprType = std::decay_t<decltype(kindExpr)>;
                  using KindLogical = typename KindExprType::Result;
                  if (const auto *c{evaluate::UnwrapConstantValue<KindLogical>(
                          kindExpr)}) {
                    for (const auto &element : c->values()) {
                      if (element.IsTrue()) {
                        return false;
                      }
                    }
                    return true;
                  }
                  return false;
                },
                logical->u)) {
          messages.Say(
              "MASK= has no .TRUE. element, so IDENTITY= must be present"_err_en_US);
        }
      }
    }
  }
}

// TRANSFER (16.9.193)
static void CheckTransferOperandType(SemanticsContext &context,
    const evaluate::DynamicType &type, const char *which) {
  if (type.IsPolymorphic() &&
      context.ShouldWarn(common::UsageWarning::PolymorphicTransferArg)) {
    context.foldingContext().messages().Say(
        common::UsageWarning::PolymorphicTransferArg,
        "%s of TRANSFER is polymorphic"_warn_en_US, which);
  } else if (!type.IsUnlimitedPolymorphic() &&
      type.category() == TypeCategory::Derived &&
      context.ShouldWarn(common::UsageWarning::PointerComponentTransferArg)) {
    DirectComponentIterator directs{type.GetDerivedTypeSpec()};
    if (auto bad{std::find_if(directs.begin(), directs.end(), IsDescriptor)};
        bad != directs.end()) {
      evaluate::SayWithDeclaration(context.foldingContext().messages(), *bad,
          common::UsageWarning::PointerComponentTransferArg,
          "%s of TRANSFER contains allocatable or pointer component %s"_warn_en_US,
          which, bad.BuildResultDesignatorName());
    }
  }
}

static void CheckTransfer(evaluate::ActualArguments &arguments,
    SemanticsContext &context, const Scope *scope) {
  evaluate::FoldingContext &foldingContext{context.foldingContext()};
  parser::ContextualMessages &messages{foldingContext.messages()};
  if (arguments.size() >= 2) {
    if (auto source{characteristics::TypeAndShape::Characterize(
            arguments[0], foldingContext)}) {
      CheckTransferOperandType(context, source->type(), "Source");
      if (auto mold{characteristics::TypeAndShape::Characterize(
              arguments[1], foldingContext)}) {
        CheckTransferOperandType(context, mold->type(), "Mold");
        if (mold->Rank() > 0 &&
            evaluate::ToInt64(
                evaluate::Fold(foldingContext,
                    mold->MeasureElementSizeInBytes(foldingContext, false)))
                    .value_or(1) == 0) {
          if (auto sourceSize{evaluate::ToInt64(evaluate::Fold(foldingContext,
                  source->MeasureSizeInBytes(foldingContext)))}) {
            if (*sourceSize > 0) {
              messages.Say(
                  "Element size of MOLD= array may not be zero when SOURCE= is not empty"_err_en_US);
            }
          } else if (context.ShouldWarn(common::UsageWarning::VoidMold)) {
            messages.Say(common::UsageWarning::VoidMold,
                "Element size of MOLD= array may not be zero unless SOURCE= is empty"_warn_en_US);
          }
        }
      }
    }
    if (arguments.size() > 2) { // SIZE=
      if (const Symbol *
          whole{UnwrapWholeSymbolOrComponentDataRef(arguments[2])}) {
        if (IsOptional(*whole)) {
          messages.Say(
              "SIZE= argument may not be the optional dummy argument '%s'"_err_en_US,
              whole->name());
        } else if (context.ShouldWarn(
                       common::UsageWarning::TransferSizePresence) &&
            IsAllocatableOrObjectPointer(whole)) {
          messages.Say(common::UsageWarning::TransferSizePresence,
              "SIZE= argument that is allocatable or pointer must be present at execution; parenthesize to silence this warning"_warn_en_US);
        }
      }
    }
  }
}

static void CheckSpecificIntrinsic(const characteristics::Procedure &proc,
    evaluate::ActualArguments &arguments, SemanticsContext &context,
    const Scope *scope, const evaluate::SpecificIntrinsic &intrinsic) {
  if (intrinsic.name == "associated") {
    CheckAssociated(arguments, context, scope);
  } else if (intrinsic.name == "co_reduce") {
    CheckCoReduce(arguments, context.foldingContext());
  } else if (intrinsic.name == "event_query") {
    CheckEvent_Query(arguments, context.foldingContext());
  } else if (intrinsic.name == "image_index") {
    CheckImage_Index(arguments, context.foldingContext().messages());
  } else if (intrinsic.name == "max" || intrinsic.name == "min") {
    CheckMaxMin(proc, arguments, context.foldingContext().messages());
  } else if (intrinsic.name == "move_alloc") {
    CheckMove_Alloc(arguments, context.foldingContext().messages());
  } else if (intrinsic.name == "present") {
    CheckPresent(arguments, context.foldingContext().messages());
  } else if (intrinsic.name == "reduce") {
    CheckReduce(arguments, context.foldingContext());
  } else if (intrinsic.name == "transfer") {
    CheckTransfer(arguments, context, scope);
  } else if (intrinsic.name == "free") {
    CheckFree(arguments, context.foldingContext().messages());
  }
}

static parser::Messages CheckExplicitInterface(
    const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
    SemanticsContext &context, const Scope *scope,
    const evaluate::SpecificIntrinsic *intrinsic,
    bool allowActualArgumentConversions, bool extentErrors,
    bool ignoreImplicitVsExplicit) {
  evaluate::FoldingContext &foldingContext{context.foldingContext()};
  parser::ContextualMessages &messages{foldingContext.messages()};
  parser::Messages buffer;
  auto restorer{messages.SetMessages(buffer)};
  RearrangeArguments(proc, actuals, messages);
  if (!buffer.empty()) {
    return buffer;
  }
  int index{0};
  for (auto &actual : actuals) {
    const auto &dummy{proc.dummyArguments.at(index++)};
    if (actual) {
      CheckExplicitInterfaceArg(*actual, dummy, proc, context, scope, intrinsic,
          allowActualArgumentConversions, extentErrors,
          ignoreImplicitVsExplicit);
    } else if (!dummy.IsOptional()) {
      if (dummy.name.empty()) {
        messages.Say(
            "Dummy argument #%d is not OPTIONAL and is not associated with "
            "an actual argument in this procedure reference"_err_en_US,
            index);
      } else {
        messages.Say("Dummy argument '%s=' (#%d) is not OPTIONAL and is not "
                     "associated with an actual argument in this procedure "
                     "reference"_err_en_US,
            dummy.name, index);
      }
    }
  }
  if (proc.IsElemental() && !buffer.AnyFatalError()) {
    CheckElementalConformance(messages, proc, actuals, foldingContext);
  }
  if (intrinsic) {
    CheckSpecificIntrinsic(proc, actuals, context, scope, *intrinsic);
  }
  return buffer;
}

bool CheckInterfaceForGeneric(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, SemanticsContext &context,
    bool allowActualArgumentConversions) {
  return proc.HasExplicitInterface() &&
      !CheckExplicitInterface(proc, actuals, context, nullptr, nullptr,
          allowActualArgumentConversions, /*extentErrors=*/false,
          /*ignoreImplicitVsExplicit=*/false)
           .AnyFatalError();
}

bool CheckArgumentIsConstantExprInRange(
    const evaluate::ActualArguments &actuals, int index, int lowerBound,
    int upperBound, parser::ContextualMessages &messages) {
  CHECK(index >= 0 && static_cast<unsigned>(index) < actuals.size());

  const std::optional<evaluate::ActualArgument> &argOptional{actuals[index]};
  if (!argOptional) {
    DIE("Actual argument should have value");
    return false;
  }

  const evaluate::ActualArgument &arg{argOptional.value()};
  const evaluate::Expr<evaluate::SomeType> *argExpr{arg.UnwrapExpr()};
  CHECK(argExpr != nullptr);

  if (!IsConstantExpr(*argExpr)) {
    messages.Say("Actual argument #%d must be a constant expression"_err_en_US,
        index + 1);
    return false;
  }

  // This does not imply that the kind of the argument is 8. The kind
  // for the intrinsic's argument should have been check prior. This is just
  // a conversion so that we can read the constant value.
  auto scalarValue{evaluate::ToInt64(argExpr)};
  CHECK(scalarValue.has_value());

  if (*scalarValue < lowerBound || *scalarValue > upperBound) {
    messages.Say(
        "Argument #%d must be a constant expression in range %d to %d"_err_en_US,
        index + 1, lowerBound, upperBound);
    return false;
  }
  return true;
}

bool CheckPPCIntrinsic(const Symbol &generic, const Symbol &specific,
    const evaluate::ActualArguments &actuals,
    evaluate::FoldingContext &context) {
  parser::ContextualMessages &messages{context.messages()};

  if (specific.name() == "__ppc_mtfsf") {
    return CheckArgumentIsConstantExprInRange(actuals, 0, 0, 7, messages);
  }
  if (specific.name() == "__ppc_mtfsfi") {
    return CheckArgumentIsConstantExprInRange(actuals, 0, 0, 7, messages) &&
        CheckArgumentIsConstantExprInRange(actuals, 1, 0, 15, messages);
  }
  if (specific.name().ToString().compare(0, 14, "__ppc_vec_sld_") == 0) {
    return CheckArgumentIsConstantExprInRange(actuals, 2, 0, 15, messages);
  }
  if (specific.name().ToString().compare(0, 15, "__ppc_vec_sldw_") == 0) {
    return CheckArgumentIsConstantExprInRange(actuals, 2, 0, 3, messages);
  }
  if (specific.name().ToString().compare(0, 14, "__ppc_vec_ctf_") == 0) {
    return CheckArgumentIsConstantExprInRange(actuals, 1, 0, 31, messages);
  }
  if (specific.name().ToString().compare(0, 16, "__ppc_vec_permi_") == 0) {
    return CheckArgumentIsConstantExprInRange(actuals, 2, 0, 3, messages);
  }
  if (specific.name().ToString().compare(0, 21, "__ppc_vec_splat_s32__") == 0) {
    return CheckArgumentIsConstantExprInRange(actuals, 0, -16, 15, messages);
  }
  if (specific.name().ToString().compare(0, 16, "__ppc_vec_splat_") == 0) {
    // The value of arg2 in vec_splat must be a constant expression that is
    // greater than or equal to 0, and less than the number of elements in arg1.
    auto *expr{actuals[0].value().UnwrapExpr()};
    auto type{characteristics::TypeAndShape::Characterize(*expr, context)};
    assert(type && "unknown type");
    const auto *derived{evaluate::GetDerivedTypeSpec(type.value().type())};
    if (derived && derived->IsVectorType()) {
      for (const auto &pair : derived->parameters()) {
        if (pair.first == "element_kind") {
          auto vecElemKind{Fortran::evaluate::ToInt64(pair.second.GetExplicit())
                               .value_or(0)};
          auto numElem{vecElemKind == 0 ? 0 : (16 / vecElemKind)};
          return CheckArgumentIsConstantExprInRange(
              actuals, 1, 0, numElem - 1, messages);
        }
      }
    } else
      assert(false && "vector type is expected");
  }
  return false;
}

bool CheckWindowsIntrinsic(
    const Symbol &intrinsic, evaluate::FoldingContext &foldingContext) {
  parser::ContextualMessages &messages{foldingContext.messages()};
  // TODO: there are other intrinsics that are unsupported on Windows that
  // should be added here.
  if (intrinsic.name() == "getuid") {
    messages.Say(
        "User IDs do not exist on Windows. This function will always return 1"_warn_en_US);
  }
  if (intrinsic.name() == "getgid") {
    messages.Say(
        "Group IDs do not exist on Windows. This function will always return 1"_warn_en_US);
  }
  return true;
}

bool CheckArguments(const characteristics::Procedure &proc,
    evaluate::ActualArguments &actuals, SemanticsContext &context,
    const Scope &scope, bool treatingExternalAsImplicit,
    bool ignoreImplicitVsExplicit,
    const evaluate::SpecificIntrinsic *intrinsic) {
  bool explicitInterface{proc.HasExplicitInterface()};
  evaluate::FoldingContext foldingContext{context.foldingContext()};
  parser::ContextualMessages &messages{foldingContext.messages()};
  bool allowArgumentConversions{true};
  if (!explicitInterface || treatingExternalAsImplicit) {
    parser::Messages buffer;
    {
      auto restorer{messages.SetMessages(buffer)};
      for (auto &actual : actuals) {
        if (actual) {
          CheckImplicitInterfaceArg(*actual, messages, context);
        }
      }
    }
    if (!buffer.empty()) {
      if (auto *msgs{messages.messages()}) {
        msgs->Annex(std::move(buffer));
      }
      return false; // don't pile on
    }
    allowArgumentConversions = false;
  }
  if (explicitInterface) {
    auto buffer{CheckExplicitInterface(proc, actuals, context, &scope,
        intrinsic, allowArgumentConversions,
        /*extentErrors=*/true, ignoreImplicitVsExplicit)};
    if (!buffer.empty()) {
      if (treatingExternalAsImplicit) {
        if (context.ShouldWarn(
                common::UsageWarning::KnownBadImplicitInterface)) {
          if (auto *msg{messages.Say(
                  common::UsageWarning::KnownBadImplicitInterface,
                  "If the procedure's interface were explicit, this reference would be in error"_warn_en_US)}) {
            buffer.AttachTo(*msg, parser::Severity::Because);
          }
        } else {
          buffer.clear();
        }
      }
      if (auto *msgs{messages.messages()}) {
        msgs->Annex(std::move(buffer));
      }
      return false;
    }
  }
  return true;
}
} // namespace Fortran::semantics