aboutsummaryrefslogtreecommitdiff
path: root/flang/lib/Optimizer/Transforms/LoopVersioning.cpp
blob: 009515939815590bca9604d537db53fb52d14945 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
//===- LoopVersioning.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for loops iterating over assumed-shape arrays, that can
/// be optimized by "guessing" that the stride is element-sized.
///
/// This is done by creating two versions of the same loop: one which assumes
/// that the elements are contiguous (stride == size of element), and one that
/// is the original generic loop.
///
/// As a side-effect of the assumed element size stride, the array is also
/// flattened to make it a 1D array - this is because the internal array
/// structure must be either 1D or have known sizes in all dimensions - and at
/// least one of the dimensions here is already unknown.
///
/// There are two distinct benefits here:
/// 1. The loop that iterates over the elements is somewhat simplified by the
///    constant stride calculation.
/// 2. Since the compiler can understand the size of the stride, it can use
///    vector instructions, where an unknown (at compile time) stride does often
///    prevent vector operations from being used.
///
/// A known drawback is that the code-size is increased, in some cases that can
/// be quite substantial - 3-4x is quite plausible (this includes that the loop
/// gets vectorized, which in itself often more than doubles the size of the
/// code, because unless the loop size is known, there will be a modulo
/// vector-size remainder to deal with.
///
/// TODO: Do we need some size limit where loops no longer get duplicated?
//        Maybe some sort of cost analysis.
/// TODO: Should some loop content - for example calls to functions and
///       subroutines inhibit the versioning of the loops. Plausibly, this
///       could be part of the cost analysis above.
//===----------------------------------------------------------------------===//

#include "flang/Common/ISO_Fortran_binding_wrapper.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/Inquiry.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#include <algorithm>

namespace fir {
#define GEN_PASS_DEF_LOOPVERSIONING
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir

#define DEBUG_TYPE "flang-loop-versioning"

namespace {

class LoopVersioningPass
    : public fir::impl::LoopVersioningBase<LoopVersioningPass> {
public:
  void runOnOperation() override;
};

/// @struct ArgInfo
/// A structure to hold an argument, the size of the argument and dimension
/// information.
struct ArgInfo {
  mlir::Value arg;
  size_t size;
  unsigned rank;
  fir::BoxDimsOp dims[CFI_MAX_RANK];
};

/// @struct ArgsUsageInLoop
/// A structure providing information about the function arguments
/// usage by the instructions immediately nested in a loop.
struct ArgsUsageInLoop {
  /// Mapping between the memref operand of an array indexing
  /// operation (e.g. fir.coordinate_of) and the argument information.
  llvm::DenseMap<mlir::Value, ArgInfo> usageInfo;
  /// Some array indexing operations inside a loop cannot be transformed.
  /// This vector holds the memref operands of such operations.
  /// The vector is used to make sure that we do not try to transform
  /// any outer loop, since this will imply the operation rewrite
  /// in this loop.
  llvm::SetVector<mlir::Value> cannotTransform;

  // Debug dump of the structure members assuming that
  // the information has been collected for the given loop.
  void dump(fir::DoLoopOp loop) const {
    LLVM_DEBUG({
      mlir::OpPrintingFlags printFlags;
      printFlags.skipRegions();
      llvm::dbgs() << "Arguments usage info for loop:\n";
      loop.print(llvm::dbgs(), printFlags);
      llvm::dbgs() << "\nUsed args:\n";
      for (auto &use : usageInfo) {
        mlir::Value v = use.first;
        v.print(llvm::dbgs(), printFlags);
        llvm::dbgs() << "\n";
      }
      llvm::dbgs() << "\nCannot transform args:\n";
      for (mlir::Value arg : cannotTransform) {
        arg.print(llvm::dbgs(), printFlags);
        llvm::dbgs() << "\n";
      }
      llvm::dbgs() << "====\n";
    });
  }

  // Erase usageInfo and cannotTransform entries for a set
  // of given arguments.
  void eraseUsage(const llvm::SetVector<mlir::Value> &args) {
    for (auto &arg : args)
      usageInfo.erase(arg);
    cannotTransform.set_subtract(args);
  }

  // Erase usageInfo and cannotTransform entries for a set
  // of given arguments provided in the form of usageInfo map.
  void eraseUsage(const llvm::DenseMap<mlir::Value, ArgInfo> &args) {
    for (auto &arg : args) {
      usageInfo.erase(arg.first);
      cannotTransform.remove(arg.first);
    }
  }
};
} // namespace

static fir::SequenceType getAsSequenceType(mlir::Value v) {
  mlir::Type argTy = fir::unwrapPassByRefType(fir::unwrapRefType(v.getType()));
  return mlir::dyn_cast<fir::SequenceType>(argTy);
}

/// Return the rank and the element size (in bytes) of the given
/// value \p v. If it is not an array or the element type is not
/// supported, then return <0, 0>. Only trivial data types
/// are currently supported.
/// When \p isArgument is true, \p v is assumed to be a function
/// argument. If \p v's type does not look like a type of an assumed
/// shape array, then the function returns <0, 0>.
/// When \p isArgument is false, array types with known innermost
/// dimension are allowed to proceed.
static std::pair<unsigned, size_t>
getRankAndElementSize(const fir::KindMapping &kindMap,
                      const mlir::DataLayout &dl, mlir::Value v,
                      bool isArgument = false) {
  if (auto seqTy = getAsSequenceType(v)) {
    unsigned rank = seqTy.getDimension();
    if (rank > 0 &&
        (!isArgument ||
         seqTy.getShape()[0] == fir::SequenceType::getUnknownExtent())) {
      size_t typeSize = 0;
      mlir::Type elementType = fir::unwrapSeqOrBoxedSeqType(v.getType());
      if (fir::isa_trivial(elementType)) {
        auto [eleSize, eleAlign] = fir::getTypeSizeAndAlignmentOrCrash(
            v.getLoc(), elementType, dl, kindMap);
        typeSize = llvm::alignTo(eleSize, eleAlign);
      }
      if (typeSize)
        return {rank, typeSize};
    }
  }

  LLVM_DEBUG(llvm::dbgs() << "Unsupported rank/type: " << v << '\n');
  return {0, 0};
}

/// If a value comes from a fir.declare of fir.pack_array,
/// follow it to the original source, otherwise return the value.
static mlir::Value unwrapPassThroughOps(mlir::Value val) {
  // Instead of unwrapping fir.declare, we may try to start
  // the analysis in this pass from fir.declare's instead
  // of the function entry block arguments. This way the loop
  // versioning would work even after FIR inlining.
  while (true) {
    if (fir::DeclareOp declare = val.getDefiningOp<fir::DeclareOp>()) {
      val = declare.getMemref();
      continue;
    }
    // fir.pack_array might be met before fir.declare - this is how
    // it is orifinally generated.
    // It might also be met after fir.declare - after the optimization
    // passes that sink fir.pack_array closer to the uses.
    if (auto packArray = val.getDefiningOp<fir::PackArrayOp>()) {
      val = packArray.getArray();
      continue;
    }
    break;
  }
  return val;
}

/// if a value comes from a fir.rebox, follow the rebox to the original source,
/// of the value, otherwise return the value
static mlir::Value unwrapReboxOp(mlir::Value val) {
  while (fir::ReboxOp rebox = val.getDefiningOp<fir::ReboxOp>()) {
    if (!fir::reboxPreservesContinuity(rebox,
                                       /*mayHaveNonDefaultLowerBounds=*/true,
                                       /*checkWhole=*/false)) {
      LLVM_DEBUG(llvm::dbgs() << "REBOX may produce non-contiguous array: "
                              << rebox << '\n');
      break;
    }
    val = rebox.getBox();
  }
  return val;
}

/// normalize a value (removing fir.declare and fir.rebox) so that we can
/// more conveniently spot values which came from function arguments
static mlir::Value normaliseVal(mlir::Value val) {
  return unwrapPassThroughOps(unwrapReboxOp(val));
}

/// some FIR operations accept a fir.shape, a fir.shift or a fir.shapeshift.
/// fir.shift and fir.shapeshift allow us to extract lower bounds
/// if lowerbounds cannot be found, return nullptr
static mlir::Value tryGetLowerBoundsFromShapeLike(mlir::Value shapeLike,
                                                  unsigned dim) {
  mlir::Value lowerBound{nullptr};
  if (auto shift = shapeLike.getDefiningOp<fir::ShiftOp>())
    lowerBound = shift.getOrigins()[dim];
  if (auto shapeShift = shapeLike.getDefiningOp<fir::ShapeShiftOp>())
    lowerBound = shapeShift.getOrigins()[dim];
  return lowerBound;
}

/// attempt to get the array lower bounds of dimension dim of the memref
/// argument to a fir.array_coor op
/// 0 <= dim < rank
/// May return nullptr if no lower bounds can be determined
static mlir::Value getLowerBound(fir::ArrayCoorOp coop, unsigned dim) {
  // 1) try to get from the shape argument to fir.array_coor
  if (mlir::Value shapeLike = coop.getShape())
    if (mlir::Value lb = tryGetLowerBoundsFromShapeLike(shapeLike, dim))
      return lb;

  // It is important not to try to read the lower bound from the box, because
  // in the FIR lowering, boxes will sometimes contain incorrect lower bound
  // information

  // out of ideas
  return {};
}

/// gets the i'th index from array coordinate operation op
/// dim should range between 0 and rank - 1
static mlir::Value getIndex(fir::FirOpBuilder &builder, mlir::Operation *op,
                            unsigned dim) {
  if (fir::CoordinateOp coop = mlir::dyn_cast<fir::CoordinateOp>(op))
    return coop.getCoor()[dim];

  fir::ArrayCoorOp coop = mlir::dyn_cast<fir::ArrayCoorOp>(op);
  assert(coop &&
         "operation must be either fir.coordiante_of or fir.array_coor");

  // fir.coordinate_of indices start at 0: adjust these indices to match by
  // subtracting the lower bound
  mlir::Value index = coop.getIndices()[dim];
  mlir::Value lb = getLowerBound(coop, dim);
  if (!lb)
    // assume a default lower bound of one
    lb = builder.createIntegerConstant(coop.getLoc(), index.getType(), 1);

  // index_0 = index - lb;
  if (lb.getType() != index.getType())
    lb = builder.createConvert(coop.getLoc(), index.getType(), lb);
  return mlir::arith::SubIOp::create(builder, coop.getLoc(), index, lb);
}

void LoopVersioningPass::runOnOperation() {
  LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
  mlir::func::FuncOp func = getOperation();

  // First look for arguments with assumed shape = unknown extent in the lowest
  // dimension.
  LLVM_DEBUG(llvm::dbgs() << "Func-name:" << func.getSymName() << "\n");
  mlir::Block::BlockArgListType args = func.getArguments();
  mlir::ModuleOp module = func->getParentOfType<mlir::ModuleOp>();
  fir::KindMapping kindMap = fir::getKindMapping(module);
  mlir::SmallVector<ArgInfo, 4> argsOfInterest;
  std::optional<mlir::DataLayout> dl = fir::support::getOrSetMLIRDataLayout(
      module, /*allowDefaultLayout=*/false);
  if (!dl)
    mlir::emitError(module.getLoc(),
                    "data layout attribute is required to perform " DEBUG_TYPE
                    "pass");
  for (auto &arg : args) {
    // Optional arguments must be checked for IsPresent before
    // looking for the bounds. They are unsupported for the time being.
    if (func.getArgAttrOfType<mlir::UnitAttr>(arg.getArgNumber(),
                                              fir::getOptionalAttrName())) {
      LLVM_DEBUG(llvm::dbgs() << "OPTIONAL is not supported\n");
      continue;
    }

    auto [rank, typeSize] =
        getRankAndElementSize(kindMap, *dl, arg, /*isArgument=*/true);
    if (rank != 0 && typeSize != 0)
      argsOfInterest.push_back({arg, typeSize, rank, {}});
  }

  if (argsOfInterest.empty()) {
    LLVM_DEBUG(llvm::dbgs()
               << "No suitable arguments.\n=== End " DEBUG_TYPE " ===\n");
    return;
  }

  // A list of all loops in the function in post-order.
  mlir::SmallVector<fir::DoLoopOp> originalLoops;
  // Information about the arguments usage by the instructions
  // immediately nested in a loop.
  llvm::DenseMap<fir::DoLoopOp, ArgsUsageInLoop> argsInLoops;

  auto &domInfo = getAnalysis<mlir::DominanceInfo>();

  // Traverse the loops in post-order and see
  // if those arguments are used inside any loop.
  func.walk([&](fir::DoLoopOp loop) {
    mlir::Block &body = *loop.getBody();
    auto &argsInLoop = argsInLoops[loop];
    originalLoops.push_back(loop);
    body.walk([&](mlir::Operation *op) {
      // Support either fir.array_coor or fir.coordinate_of.
      if (!mlir::isa<fir::ArrayCoorOp, fir::CoordinateOp>(op))
        return;
      // Process only operations immediately nested in the current loop.
      if (op->getParentOfType<fir::DoLoopOp>() != loop)
        return;
      mlir::Value operand = op->getOperand(0);
      for (auto a : argsOfInterest) {
        if (a.arg == normaliseVal(operand)) {
          // Use the reboxed value, not the block arg when re-creating the loop.
          a.arg = operand;

          // Check that the operand dominates the loop?
          // If this is the case, record such operands in argsInLoop.cannot-
          // Transform, so that they disable the transformation for the parent
          /// loops as well.
          if (!domInfo.dominates(a.arg, loop))
            argsInLoop.cannotTransform.insert(a.arg);

          // No support currently for sliced arrays.
          // This means that we cannot transform properly
          // instructions referencing a.arg in the whole loop
          // nest this loop is located in.
          if (auto arrayCoor = mlir::dyn_cast<fir::ArrayCoorOp>(op))
            if (arrayCoor.getSlice())
              argsInLoop.cannotTransform.insert(a.arg);

          // We need to compute the rank and element size
          // based on the operand, not the original argument,
          // because array slicing may affect it.
          std::tie(a.rank, a.size) = getRankAndElementSize(kindMap, *dl, a.arg);
          if (a.rank == 0 || a.size == 0)
            argsInLoop.cannotTransform.insert(a.arg);

          if (argsInLoop.cannotTransform.contains(a.arg)) {
            // Remove any previously recorded usage, if any.
            argsInLoop.usageInfo.erase(a.arg);
            break;
          }

          // Record the a.arg usage, if not recorded yet.
          argsInLoop.usageInfo.try_emplace(a.arg, a);
          break;
        }
      }
    });
  });

  // Dump loops info after initial collection.
  LLVM_DEBUG({
    llvm::dbgs() << "Initial usage info:\n";
    for (fir::DoLoopOp loop : originalLoops) {
      auto &argsInLoop = argsInLoops[loop];
      argsInLoop.dump(loop);
    }
  });

  // Clear argument usage for parent loops if an inner loop
  // contains a non-transformable usage.
  for (fir::DoLoopOp loop : originalLoops) {
    auto &argsInLoop = argsInLoops[loop];
    if (argsInLoop.cannotTransform.empty())
      continue;

    fir::DoLoopOp parent = loop;
    while ((parent = parent->getParentOfType<fir::DoLoopOp>()))
      argsInLoops[parent].eraseUsage(argsInLoop.cannotTransform);
  }

  // If an argument access can be optimized in a loop and
  // its descendant loop, then it does not make sense to
  // generate the contiguity check for the descendant loop.
  // The check will be produced as part of the ancestor
  // loop's transformation. So we can clear the argument
  // usage for all descendant loops.
  for (fir::DoLoopOp loop : originalLoops) {
    auto &argsInLoop = argsInLoops[loop];
    if (argsInLoop.usageInfo.empty())
      continue;

    loop.getBody()->walk([&](fir::DoLoopOp dloop) {
      argsInLoops[dloop].eraseUsage(argsInLoop.usageInfo);
    });
  }

  LLVM_DEBUG({
    llvm::dbgs() << "Final usage info:\n";
    for (fir::DoLoopOp loop : originalLoops) {
      auto &argsInLoop = argsInLoops[loop];
      argsInLoop.dump(loop);
    }
  });

  // Reduce the collected information to a list of loops
  // with attached arguments usage information.
  // The list must hold the loops in post order, so that
  // the inner loops are transformed before the outer loops.
  struct OpsWithArgs {
    mlir::Operation *op;
    mlir::SmallVector<ArgInfo, 4> argsAndDims;
  };
  mlir::SmallVector<OpsWithArgs, 4> loopsOfInterest;
  for (fir::DoLoopOp loop : originalLoops) {
    auto &argsInLoop = argsInLoops[loop];
    if (argsInLoop.usageInfo.empty())
      continue;
    OpsWithArgs info;
    info.op = loop;
    for (auto &arg : argsInLoop.usageInfo)
      info.argsAndDims.push_back(arg.second);
    loopsOfInterest.emplace_back(std::move(info));
  }

  if (loopsOfInterest.empty()) {
    LLVM_DEBUG(llvm::dbgs()
               << "No loops to transform.\n=== End " DEBUG_TYPE " ===\n");
    return;
  }

  // If we get here, there are loops to process.
  fir::FirOpBuilder builder{module, std::move(kindMap)};
  mlir::Location loc = builder.getUnknownLoc();
  mlir::IndexType idxTy = builder.getIndexType();

  LLVM_DEBUG(llvm::dbgs() << "Func Before transformation:\n");
  LLVM_DEBUG(func->dump());

  LLVM_DEBUG(llvm::dbgs() << "loopsOfInterest: " << loopsOfInterest.size()
                          << "\n");
  for (auto op : loopsOfInterest) {
    LLVM_DEBUG(op.op->dump());
    builder.setInsertionPoint(op.op);

    mlir::Value allCompares = nullptr;
    // Ensure all of the arrays are unit-stride.
    for (auto &arg : op.argsAndDims) {
      // Fetch all the dimensions of the array, except the last dimension.
      // Always fetch the first dimension, however, so set ndims = 1 if
      // we have one dim
      unsigned ndims = arg.rank;
      for (unsigned i = 0; i < ndims; i++) {
        mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
        arg.dims[i] = fir::BoxDimsOp::create(builder, loc, idxTy, idxTy, idxTy,
                                             arg.arg, dimIdx);
      }
      // We only care about lowest order dimension, here.
      mlir::Value elemSize =
          builder.createIntegerConstant(loc, idxTy, arg.size);
      mlir::Value cmp = mlir::arith::CmpIOp::create(
          builder, loc, mlir::arith::CmpIPredicate::eq,
          arg.dims[0].getResult(2), elemSize);
      if (!allCompares) {
        allCompares = cmp;
      } else {
        allCompares =
            mlir::arith::AndIOp::create(builder, loc, cmp, allCompares);
      }
    }

    auto ifOp =
        fir::IfOp::create(builder, loc, op.op->getResultTypes(), allCompares,
                          /*withElse=*/true);
    builder.setInsertionPointToStart(&ifOp.getThenRegion().front());

    LLVM_DEBUG(llvm::dbgs() << "Creating cloned loop\n");
    mlir::Operation *clonedLoop = op.op->clone();
    bool changed = false;
    for (auto &arg : op.argsAndDims) {
      fir::SequenceType::Shape newShape;
      newShape.push_back(fir::SequenceType::getUnknownExtent());
      auto elementType = fir::unwrapSeqOrBoxedSeqType(arg.arg.getType());
      mlir::Type arrTy = fir::SequenceType::get(newShape, elementType);
      mlir::Type boxArrTy = fir::BoxType::get(arrTy);
      mlir::Type refArrTy = builder.getRefType(arrTy);
      auto carg = fir::ConvertOp::create(builder, loc, boxArrTy, arg.arg);
      auto caddr = fir::BoxAddrOp::create(builder, loc, refArrTy, carg);
      auto insPt = builder.saveInsertionPoint();
      // Use caddr instead of arg.
      clonedLoop->walk([&](mlir::Operation *coop) {
        if (!mlir::isa<fir::CoordinateOp, fir::ArrayCoorOp>(coop))
          return;
        // Reduce the multi-dimensioned index to a single index.
        // This is required becase fir arrays do not support multiple dimensions
        // with unknown dimensions at compile time.
        // We then calculate the multidimensional array like this:
        // arr(x, y, z) bedcomes arr(z * stride(2) + y * stride(1) + x)
        // where stride is the distance between elements in the dimensions
        // 0, 1 and 2 or x, y and z.
        if (coop->getOperand(0) == arg.arg && coop->getOperands().size() >= 2) {
          builder.setInsertionPoint(coop);
          mlir::Value totalIndex;
          for (unsigned i = arg.rank - 1; i > 0; i--) {
            mlir::Value curIndex =
                builder.createConvert(loc, idxTy, getIndex(builder, coop, i));
            // Multiply by the stride of this array. Later we'll divide by the
            // element size.
            mlir::Value scale =
                builder.createConvert(loc, idxTy, arg.dims[i].getResult(2));
            curIndex =
                mlir::arith::MulIOp::create(builder, loc, scale, curIndex);
            totalIndex = (totalIndex) ? mlir::arith::AddIOp::create(
                                            builder, loc, curIndex, totalIndex)
                                      : curIndex;
          }
          // This is the lowest dimension - which doesn't need scaling
          mlir::Value finalIndex =
              builder.createConvert(loc, idxTy, getIndex(builder, coop, 0));
          if (totalIndex) {
            assert(llvm::isPowerOf2_32(arg.size) &&
                   "Expected power of two here");
            unsigned bits = llvm::Log2_32(arg.size);
            mlir::Value elemShift =
                builder.createIntegerConstant(loc, idxTy, bits);
            totalIndex = mlir::arith::AddIOp::create(
                builder, loc,
                mlir::arith::ShRSIOp::create(builder, loc, totalIndex,
                                             elemShift),
                finalIndex);
          } else {
            totalIndex = finalIndex;
          }
          auto newOp = fir::CoordinateOp::create(
              builder, loc, builder.getRefType(elementType), caddr,
              mlir::ValueRange{totalIndex});
          LLVM_DEBUG(newOp->dump());
          coop->getResult(0).replaceAllUsesWith(newOp->getResult(0));
          coop->erase();
          changed = true;
        }
      });

      builder.restoreInsertionPoint(insPt);
    }
    assert(changed && "Expected operations to have changed");

    builder.insert(clonedLoop);
    // Forward the result(s), if any, from the loop operation to the
    //
    mlir::ResultRange results = clonedLoop->getResults();
    bool hasResults = (results.size() > 0);
    if (hasResults)
      fir::ResultOp::create(builder, loc, results);

    // Add the original loop in the else-side of the if operation.
    builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
    op.op->replaceAllUsesWith(ifOp);
    op.op->remove();
    builder.insert(op.op);
    // Rely on "cloned loop has results, so original loop also has results".
    if (hasResults) {
      fir::ResultOp::create(builder, loc, op.op->getResults());
    } else {
      // Use an assert to check this.
      assert(op.op->getResults().size() == 0 &&
             "Weird, the cloned loop doesn't have results, but the original "
             "does?");
    }
  }

  LLVM_DEBUG(llvm::dbgs() << "Func After transform:\n");
  LLVM_DEBUG(func->dump());

  LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}