aboutsummaryrefslogtreecommitdiff
path: root/flang/lib/Optimizer/Transforms/CUFGPUToLLVMConversion.cpp
blob: a40ed95391c3a029a57180e69699c0a1635038cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//===-- CUFGPUToLLVMConversion.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Optimizer/Transforms/CUFGPUToLLVMConversion.h"
#include "flang/Optimizer/Builder/CUFCommon.h"
#include "flang/Optimizer/CodeGen/TypeConverter.h"
#include "flang/Optimizer/Dialect/CUF/CUFOps.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Runtime/CUDA/common.h"
#include "flang/Support/Fortran.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/FormatVariadic.h"

namespace fir {
#define GEN_PASS_DEF_CUFGPUTOLLVMCONVERSION
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir

using namespace fir;
using namespace mlir;
using namespace Fortran::runtime;

namespace {

static mlir::Value createKernelArgArray(mlir::Location loc,
                                        mlir::ValueRange operands,
                                        mlir::PatternRewriter &rewriter) {

  auto *ctx = rewriter.getContext();
  llvm::SmallVector<mlir::Type> structTypes(operands.size(), nullptr);

  for (auto [i, arg] : llvm::enumerate(operands))
    structTypes[i] = arg.getType();

  auto structTy = mlir::LLVM::LLVMStructType::getLiteral(ctx, structTypes);
  auto ptrTy = mlir::LLVM::LLVMPointerType::get(rewriter.getContext());
  mlir::Type i32Ty = rewriter.getI32Type();
  auto zero = mlir::LLVM::ConstantOp::create(rewriter, loc, i32Ty,
                                             rewriter.getIntegerAttr(i32Ty, 0));
  auto one = mlir::LLVM::ConstantOp::create(rewriter, loc, i32Ty,
                                            rewriter.getIntegerAttr(i32Ty, 1));
  mlir::Value argStruct =
      mlir::LLVM::AllocaOp::create(rewriter, loc, ptrTy, structTy, one);
  auto size = mlir::LLVM::ConstantOp::create(
      rewriter, loc, i32Ty, rewriter.getIntegerAttr(i32Ty, structTypes.size()));
  mlir::Value argArray =
      mlir::LLVM::AllocaOp::create(rewriter, loc, ptrTy, ptrTy, size);

  for (auto [i, arg] : llvm::enumerate(operands)) {
    auto indice = mlir::LLVM::ConstantOp::create(
        rewriter, loc, i32Ty, rewriter.getIntegerAttr(i32Ty, i));
    mlir::Value structMember =
        LLVM::GEPOp::create(rewriter, loc, ptrTy, structTy, argStruct,
                            mlir::ArrayRef<mlir::Value>({zero, indice}));
    LLVM::StoreOp::create(rewriter, loc, arg, structMember);
    mlir::Value arrayMember =
        LLVM::GEPOp::create(rewriter, loc, ptrTy, ptrTy, argArray,
                            mlir::ArrayRef<mlir::Value>({indice}));
    LLVM::StoreOp::create(rewriter, loc, structMember, arrayMember);
  }
  return argArray;
}

struct GPULaunchKernelConversion
    : public mlir::ConvertOpToLLVMPattern<mlir::gpu::LaunchFuncOp> {
  explicit GPULaunchKernelConversion(
      const fir::LLVMTypeConverter &typeConverter, mlir::PatternBenefit benefit)
      : mlir::ConvertOpToLLVMPattern<mlir::gpu::LaunchFuncOp>(typeConverter,
                                                              benefit) {}

  using OpAdaptor = typename mlir::gpu::LaunchFuncOp::Adaptor;

  mlir::LogicalResult
  matchAndRewrite(mlir::gpu::LaunchFuncOp op, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    // Only convert gpu.launch_func for CUDA Fortran.
    if (!op.getOperation()->getAttrOfType<cuf::ProcAttributeAttr>(
            cuf::getProcAttrName()))
      return mlir::failure();

    mlir::Location loc = op.getLoc();
    auto *ctx = rewriter.getContext();
    mlir::ModuleOp mod = op->getParentOfType<mlir::ModuleOp>();
    mlir::Value dynamicMemorySize = op.getDynamicSharedMemorySize();
    mlir::Type i32Ty = rewriter.getI32Type();
    if (!dynamicMemorySize)
      dynamicMemorySize = mlir::LLVM::ConstantOp::create(
          rewriter, loc, i32Ty, rewriter.getIntegerAttr(i32Ty, 0));

    mlir::Value kernelArgs =
        createKernelArgArray(loc, adaptor.getKernelOperands(), rewriter);

    auto ptrTy = mlir::LLVM::LLVMPointerType::get(rewriter.getContext());
    auto kernel = mod.lookupSymbol<mlir::LLVM::LLVMFuncOp>(op.getKernelName());
    mlir::Value kernelPtr;
    if (!kernel) {
      auto funcOp = mod.lookupSymbol<mlir::func::FuncOp>(op.getKernelName());
      if (!funcOp)
        return mlir::failure();
      kernelPtr =
          LLVM::AddressOfOp::create(rewriter, loc, ptrTy, funcOp.getName());
    } else {
      kernelPtr =
          LLVM::AddressOfOp::create(rewriter, loc, ptrTy, kernel.getName());
    }

    auto llvmIntPtrType = mlir::IntegerType::get(
        ctx, this->getTypeConverter()->getPointerBitwidth(0));
    auto voidTy = mlir::LLVM::LLVMVoidType::get(ctx);

    mlir::Value nullPtr = LLVM::ZeroOp::create(rewriter, loc, ptrTy);

    if (op.hasClusterSize()) {
      auto funcOp = mod.lookupSymbol<mlir::LLVM::LLVMFuncOp>(
          RTNAME_STRING(CUFLaunchClusterKernel));
      auto funcTy = mlir::LLVM::LLVMFunctionType::get(
          voidTy,
          {ptrTy, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
           llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
           llvmIntPtrType, llvmIntPtrType, ptrTy, i32Ty, ptrTy, ptrTy},
          /*isVarArg=*/false);
      auto cufLaunchClusterKernel = mlir::SymbolRefAttr::get(
          mod.getContext(), RTNAME_STRING(CUFLaunchClusterKernel));
      if (!funcOp) {
        mlir::OpBuilder::InsertionGuard insertGuard(rewriter);
        rewriter.setInsertionPointToStart(mod.getBody());
        auto launchKernelFuncOp = mlir::LLVM::LLVMFuncOp::create(
            rewriter, loc, RTNAME_STRING(CUFLaunchClusterKernel), funcTy);
        launchKernelFuncOp.setVisibility(
            mlir::SymbolTable::Visibility::Private);
      }

      mlir::Value stream = nullPtr;
      if (!adaptor.getAsyncDependencies().empty()) {
        if (adaptor.getAsyncDependencies().size() != 1)
          return rewriter.notifyMatchFailure(
              op, "Can only convert with exactly one stream dependency.");
        stream = adaptor.getAsyncDependencies().front();
      }

      mlir::LLVM::CallOp::create(
          rewriter, loc, funcTy, cufLaunchClusterKernel,
          mlir::ValueRange{kernelPtr, adaptor.getClusterSizeX(),
                           adaptor.getClusterSizeY(), adaptor.getClusterSizeZ(),
                           adaptor.getGridSizeX(), adaptor.getGridSizeY(),
                           adaptor.getGridSizeZ(), adaptor.getBlockSizeX(),
                           adaptor.getBlockSizeY(), adaptor.getBlockSizeZ(),
                           stream, dynamicMemorySize, kernelArgs, nullPtr});
      rewriter.eraseOp(op);
    } else {
      auto procAttr =
          op->getAttrOfType<cuf::ProcAttributeAttr>(cuf::getProcAttrName());
      bool isGridGlobal =
          procAttr && procAttr.getValue() == cuf::ProcAttribute::GridGlobal;
      llvm::StringRef fctName = isGridGlobal
                                    ? RTNAME_STRING(CUFLaunchCooperativeKernel)
                                    : RTNAME_STRING(CUFLaunchKernel);
      auto funcOp = mod.lookupSymbol<mlir::LLVM::LLVMFuncOp>(fctName);
      auto funcTy = mlir::LLVM::LLVMFunctionType::get(
          voidTy,
          {ptrTy, llvmIntPtrType, llvmIntPtrType, llvmIntPtrType,
           llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, ptrTy, i32Ty, ptrTy,
           ptrTy},
          /*isVarArg=*/false);
      auto cufLaunchKernel =
          mlir::SymbolRefAttr::get(mod.getContext(), fctName);
      if (!funcOp) {
        mlir::OpBuilder::InsertionGuard insertGuard(rewriter);
        rewriter.setInsertionPointToStart(mod.getBody());
        auto launchKernelFuncOp =
            mlir::LLVM::LLVMFuncOp::create(rewriter, loc, fctName, funcTy);
        launchKernelFuncOp.setVisibility(
            mlir::SymbolTable::Visibility::Private);
      }

      mlir::Value stream = nullPtr;
      if (!adaptor.getAsyncDependencies().empty()) {
        if (adaptor.getAsyncDependencies().size() != 1)
          return rewriter.notifyMatchFailure(
              op, "Can only convert with exactly one stream dependency.");
        stream = adaptor.getAsyncDependencies().front();
      }

      mlir::LLVM::CallOp::create(
          rewriter, loc, funcTy, cufLaunchKernel,
          mlir::ValueRange{kernelPtr, adaptor.getGridSizeX(),
                           adaptor.getGridSizeY(), adaptor.getGridSizeZ(),
                           adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
                           adaptor.getBlockSizeZ(), stream, dynamicMemorySize,
                           kernelArgs, nullPtr});
      rewriter.eraseOp(op);
    }

    return mlir::success();
  }
};

static std::string getFuncName(cuf::SharedMemoryOp op) {
  if (auto gpuFuncOp = op->getParentOfType<mlir::gpu::GPUFuncOp>())
    return gpuFuncOp.getName().str();
  if (auto funcOp = op->getParentOfType<mlir::func::FuncOp>())
    return funcOp.getName().str();
  if (auto llvmFuncOp = op->getParentOfType<mlir::LLVM::LLVMFuncOp>())
    return llvmFuncOp.getSymName().str();
  return "";
}

static mlir::Value createAddressOfOp(mlir::ConversionPatternRewriter &rewriter,
                                     mlir::Location loc,
                                     gpu::GPUModuleOp gpuMod,
                                     std::string &sharedGlobalName) {
  auto llvmPtrTy = mlir::LLVM::LLVMPointerType::get(
      rewriter.getContext(), mlir::NVVM::NVVMMemorySpace::kSharedMemorySpace);
  if (auto g = gpuMod.lookupSymbol<fir::GlobalOp>(sharedGlobalName))
    return mlir::LLVM::AddressOfOp::create(rewriter, loc, llvmPtrTy,
                                           g.getSymName());
  if (auto g = gpuMod.lookupSymbol<mlir::LLVM::GlobalOp>(sharedGlobalName))
    return mlir::LLVM::AddressOfOp::create(rewriter, loc, llvmPtrTy,
                                           g.getSymName());
  return {};
}

struct CUFSharedMemoryOpConversion
    : public mlir::ConvertOpToLLVMPattern<cuf::SharedMemoryOp> {
  explicit CUFSharedMemoryOpConversion(
      const fir::LLVMTypeConverter &typeConverter, mlir::PatternBenefit benefit)
      : mlir::ConvertOpToLLVMPattern<cuf::SharedMemoryOp>(typeConverter,
                                                          benefit) {}
  using OpAdaptor = typename cuf::SharedMemoryOp::Adaptor;

  mlir::LogicalResult
  matchAndRewrite(cuf::SharedMemoryOp op, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    mlir::Location loc = op->getLoc();
    if (!op.getOffset())
      mlir::emitError(loc,
                      "cuf.shared_memory must have an offset for code gen");

    auto gpuMod = op->getParentOfType<gpu::GPUModuleOp>();
    std::string sharedGlobalName =
        (getFuncName(op) + llvm::Twine(cudaSharedMemSuffix)).str();
    mlir::Value sharedGlobalAddr =
        createAddressOfOp(rewriter, loc, gpuMod, sharedGlobalName);

    if (!sharedGlobalAddr)
      mlir::emitError(loc, "Could not find the shared global operation\n");

    auto castPtr = mlir::LLVM::AddrSpaceCastOp::create(
        rewriter, loc, mlir::LLVM::LLVMPointerType::get(rewriter.getContext()),
        sharedGlobalAddr);
    mlir::Type baseType = castPtr->getResultTypes().front();
    llvm::SmallVector<mlir::LLVM::GEPArg> gepArgs = {op.getOffset()};
    mlir::Value shmemPtr = mlir::LLVM::GEPOp::create(
        rewriter, loc, baseType, rewriter.getI8Type(), castPtr, gepArgs);
    rewriter.replaceOp(op, {shmemPtr});
    return mlir::success();
  }
};

struct CUFStreamCastConversion
    : public mlir::ConvertOpToLLVMPattern<cuf::StreamCastOp> {
  explicit CUFStreamCastConversion(const fir::LLVMTypeConverter &typeConverter,
                                   mlir::PatternBenefit benefit)
      : mlir::ConvertOpToLLVMPattern<cuf::StreamCastOp>(typeConverter,
                                                        benefit) {}
  using OpAdaptor = typename cuf::StreamCastOp::Adaptor;

  mlir::LogicalResult
  matchAndRewrite(cuf::StreamCastOp op, OpAdaptor adaptor,
                  mlir::ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOp(op, adaptor.getStream());
    return mlir::success();
  }
};

class CUFGPUToLLVMConversion
    : public fir::impl::CUFGPUToLLVMConversionBase<CUFGPUToLLVMConversion> {
public:
  void runOnOperation() override {
    auto *ctx = &getContext();
    mlir::RewritePatternSet patterns(ctx);
    mlir::ConversionTarget target(*ctx);

    mlir::Operation *op = getOperation();
    mlir::ModuleOp module = mlir::dyn_cast<mlir::ModuleOp>(op);
    if (!module)
      return signalPassFailure();

    std::optional<mlir::DataLayout> dl = fir::support::getOrSetMLIRDataLayout(
        module, /*allowDefaultLayout=*/false);
    fir::LLVMTypeConverter typeConverter(module, /*applyTBAA=*/false,
                                         /*forceUnifiedTBAATree=*/false, *dl);
    cuf::populateCUFGPUToLLVMConversionPatterns(typeConverter, patterns);

    target.addDynamicallyLegalOp<mlir::gpu::LaunchFuncOp>(
        [&](mlir::gpu::LaunchFuncOp op) {
          if (op.getOperation()->getAttrOfType<cuf::ProcAttributeAttr>(
                  cuf::getProcAttrName()))
            return false;
          return true;
        });

    target.addIllegalOp<cuf::SharedMemoryOp>();
    target.addLegalDialect<mlir::LLVM::LLVMDialect>();
    if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
                                                  std::move(patterns)))) {
      mlir::emitError(mlir::UnknownLoc::get(ctx),
                      "error in CUF GPU op conversion\n");
      signalPassFailure();
    }
  }
};
} // namespace

void cuf::populateCUFGPUToLLVMConversionPatterns(
    fir::LLVMTypeConverter &converter, mlir::RewritePatternSet &patterns,
    mlir::PatternBenefit benefit) {
  converter.addConversion([&converter](mlir::gpu::AsyncTokenType) -> Type {
    return mlir::LLVM::LLVMPointerType::get(&converter.getContext());
  });
  patterns.add<CUFSharedMemoryOpConversion, GPULaunchKernelConversion,
               CUFStreamCastConversion>(converter, benefit);
}