1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
|
//===- AliasAnalysis.cpp - Alias Analysis for FIR ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Analysis/AliasAnalysis.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/FortranVariableInterface.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "mlir/Analysis/AliasAnalysis.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Value.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
#define DEBUG_TYPE "fir-alias-analysis"
//===----------------------------------------------------------------------===//
// AliasAnalysis: alias
//===----------------------------------------------------------------------===//
static fir::AliasAnalysis::Source::Attributes
getAttrsFromVariable(fir::FortranVariableOpInterface var) {
fir::AliasAnalysis::Source::Attributes attrs;
if (var.isTarget())
attrs.set(fir::AliasAnalysis::Attribute::Target);
if (var.isPointer())
attrs.set(fir::AliasAnalysis::Attribute::Pointer);
if (var.isIntentIn())
attrs.set(fir::AliasAnalysis::Attribute::IntentIn);
return attrs;
}
static bool hasGlobalOpTargetAttr(mlir::Value v, fir::AddrOfOp op) {
auto globalOpName =
mlir::OperationName(fir::GlobalOp::getOperationName(), op->getContext());
return fir::valueHasFirAttribute(
v, fir::GlobalOp::getTargetAttrName(globalOpName));
}
static bool isEvaluateInMemoryBlockArg(mlir::Value v) {
if (auto evalInMem = llvm::dyn_cast_or_null<hlfir::EvaluateInMemoryOp>(
v.getParentRegion()->getParentOp()))
return evalInMem.getMemory() == v;
return false;
}
template <typename OMPTypeOp, typename DeclTypeOp>
static bool isPrivateArg(omp::BlockArgOpenMPOpInterface &argIface,
OMPTypeOp &op, DeclTypeOp &declOp) {
if (!op.getPrivateSyms().has_value())
return false;
for (auto [opSym, blockArg] :
llvm::zip_equal(*op.getPrivateSyms(), argIface.getPrivateBlockArgs())) {
if (blockArg == declOp.getMemref()) {
return true;
}
}
return false;
}
namespace fir {
void AliasAnalysis::Source::print(llvm::raw_ostream &os) const {
if (auto v = llvm::dyn_cast<mlir::Value>(origin.u))
os << v;
else if (auto gbl = llvm::dyn_cast<mlir::SymbolRefAttr>(origin.u))
os << gbl;
os << " SourceKind: " << EnumToString(kind);
os << " Type: " << valueType << " ";
if (origin.isData) {
os << " following data ";
} else {
os << " following box reference ";
}
attributes.Dump(os, EnumToString);
}
bool AliasAnalysis::isRecordWithPointerComponent(mlir::Type ty) {
auto eleTy = fir::dyn_cast_ptrEleTy(ty);
if (!eleTy)
return false;
// TO DO: Look for pointer components
return mlir::isa<fir::RecordType>(eleTy);
}
bool AliasAnalysis::isPointerReference(mlir::Type ty) {
auto eleTy = fir::dyn_cast_ptrEleTy(ty);
if (!eleTy)
return false;
return fir::isPointerType(eleTy) || mlir::isa<fir::PointerType>(eleTy);
}
bool AliasAnalysis::Source::isTargetOrPointer() const {
return attributes.test(Attribute::Pointer) ||
attributes.test(Attribute::Target);
}
bool AliasAnalysis::Source::isTarget() const {
return attributes.test(Attribute::Target);
}
bool AliasAnalysis::Source::isPointer() const {
return attributes.test(Attribute::Pointer);
}
bool AliasAnalysis::Source::isDummyArgument() const {
if (auto v = origin.u.dyn_cast<mlir::Value>()) {
return fir::isDummyArgument(v);
}
return false;
}
bool AliasAnalysis::Source::isData() const { return origin.isData; }
bool AliasAnalysis::Source::isBoxData() const {
return mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(valueType)) &&
origin.isData;
}
bool AliasAnalysis::Source::isFortranUserVariable() const {
if (!origin.instantiationPoint)
return false;
return llvm::TypeSwitch<mlir::Operation *, bool>(origin.instantiationPoint)
.template Case<fir::DeclareOp, hlfir::DeclareOp>([&](auto declOp) {
return fir::NameUniquer::deconstruct(declOp.getUniqName()).first ==
fir::NameUniquer::NameKind::VARIABLE;
})
.Default([&](auto op) { return false; });
}
bool AliasAnalysis::Source::mayBeDummyArgOrHostAssoc() const {
return kind != SourceKind::Allocate && kind != SourceKind::Global;
}
bool AliasAnalysis::Source::mayBePtrDummyArgOrHostAssoc() const {
// Must alias like dummy arg (or HostAssoc).
if (!mayBeDummyArgOrHostAssoc())
return false;
// Must be address of the dummy arg not of a dummy arg component.
if (isRecordWithPointerComponent(valueType))
return false;
// Must be address *of* (not *in*) a pointer.
return attributes.test(Attribute::Pointer) && !isData();
}
bool AliasAnalysis::Source::mayBeActualArg() const {
return kind != SourceKind::Allocate;
}
bool AliasAnalysis::Source::mayBeActualArgWithPtr(
const mlir::Value *val) const {
// Must not be local.
if (!mayBeActualArg())
return false;
// Can be address *of* (not *in*) a pointer.
if (attributes.test(Attribute::Pointer) && !isData())
return true;
// Can be address of a composite with a pointer component.
if (isRecordWithPointerComponent(val->getType()))
return true;
return false;
}
AliasResult AliasAnalysis::alias(mlir::Value lhs, mlir::Value rhs) {
// A wrapper around alias(Source lhsSrc, Source rhsSrc, mlir::Value lhs,
// mlir::Value rhs) This allows a user to provide Source that may be obtained
// through other dialects
auto lhsSrc = getSource(lhs);
auto rhsSrc = getSource(rhs);
return alias(lhsSrc, rhsSrc, lhs, rhs);
}
AliasResult AliasAnalysis::alias(Source lhsSrc, Source rhsSrc, mlir::Value lhs,
mlir::Value rhs) {
// TODO: alias() has to be aware of the function scopes.
// After MLIR inlining, the current implementation may
// not recognize non-aliasing entities.
bool approximateSource = lhsSrc.approximateSource || rhsSrc.approximateSource;
LLVM_DEBUG(llvm::dbgs() << "\nAliasAnalysis::alias\n";
llvm::dbgs() << " lhs: " << lhs << "\n";
llvm::dbgs() << " lhsSrc: " << lhsSrc << "\n";
llvm::dbgs() << " rhs: " << rhs << "\n";
llvm::dbgs() << " rhsSrc: " << rhsSrc << "\n";);
// Indirect case currently not handled. Conservatively assume
// it aliases with everything
if (lhsSrc.kind >= SourceKind::Indirect ||
rhsSrc.kind >= SourceKind::Indirect) {
LLVM_DEBUG(llvm::dbgs() << " aliasing because of indirect access\n");
return AliasResult::MayAlias;
}
if (lhsSrc.kind == rhsSrc.kind) {
// If the kinds and origins are the same, then lhs and rhs must alias unless
// either source is approximate. Approximate sources are for parts of the
// origin, but we don't have info here on which parts and whether they
// overlap, so we normally return MayAlias in that case.
if (lhsSrc.origin == rhsSrc.origin) {
LLVM_DEBUG(llvm::dbgs()
<< " aliasing because same source kind and origin\n");
if (approximateSource)
return AliasResult::MayAlias;
return AliasResult::MustAlias;
}
// If one value is the address of a composite, and if the other value is the
// address of a pointer/allocatable component of that composite, their
// origins compare unequal because the latter has !isData(). As for the
// address of any component vs. the address of the composite, a store to one
// can affect a load from the other, so the result should be MayAlias. To
// catch this case, we conservatively return MayAlias when one value is the
// address of a composite, the other value is non-data, and they have the
// same origin value.
//
// TODO: That logic does not check that the latter is actually a component
// of the former, so it can return MayAlias when unnecessary. For example,
// they might both be addresses of components of a larger composite.
//
// FIXME: Actually, we should generalize from isRecordWithPointerComponent
// to any composite because a component with !isData() is not always a
// pointer. However, Source::isRecordWithPointerComponent currently doesn't
// actually check for pointer components, so it's fine for now.
if (lhsSrc.origin.u == rhsSrc.origin.u &&
((isRecordWithPointerComponent(lhs.getType()) && !rhsSrc.isData()) ||
(isRecordWithPointerComponent(rhs.getType()) && !lhsSrc.isData()))) {
LLVM_DEBUG(llvm::dbgs()
<< " aliasing between composite and non-data component with "
<< "same source kind and origin value\n");
return AliasResult::MayAlias;
}
// Two host associated accesses may overlap due to an equivalence.
if (lhsSrc.kind == SourceKind::HostAssoc) {
LLVM_DEBUG(llvm::dbgs() << " aliasing because of host association\n");
return AliasResult::MayAlias;
}
}
Source *src1, *src2;
mlir::Value *val1, *val2;
if (lhsSrc.kind < rhsSrc.kind) {
src1 = &lhsSrc;
src2 = &rhsSrc;
val1 = &lhs;
val2 = &rhs;
} else {
src1 = &rhsSrc;
src2 = &lhsSrc;
val1 = &rhs;
val2 = &lhs;
}
if (src1->kind == SourceKind::Argument &&
src2->kind == SourceKind::HostAssoc) {
// Treat the host entity as TARGET for the purpose of disambiguating
// it with a dummy access. It is required for this particular case:
// subroutine test
// integer :: x(10)
// call inner(x)
// contains
// subroutine inner(y)
// integer, target :: y(:)
// x(1) = y(1)
// end subroutine inner
// end subroutine test
//
// F18 15.5.2.13 (4) (b) allows 'x' and 'y' to address the same object.
// 'y' has an explicit TARGET attribute, but 'x' has neither TARGET
// nor POINTER.
src2->attributes.set(Attribute::Target);
}
// Two TARGET/POINTERs may alias. The logic here focuses on data. Handling
// of non-data is included below.
if (src1->isTargetOrPointer() && src2->isTargetOrPointer() &&
src1->isData() && src2->isData()) {
LLVM_DEBUG(llvm::dbgs() << " aliasing because of target or pointer\n");
return AliasResult::MayAlias;
}
// Aliasing for dummy arg with target attribute.
//
// The address of a dummy arg (or HostAssoc) may alias the address of a
// non-local (global or another dummy arg) when both have target attributes.
// If either is a composite, addresses of components may alias as well.
//
// The previous "if" calling isTargetOrPointer casts a very wide net and so
// reports MayAlias for many such cases that would otherwise be reported here.
// It specifically skips such cases where one or both values have !isData()
// (e.g., address *of* pointer/allocatable component vs. address of
// composite), so this "if" catches those cases.
if (src1->attributes.test(Attribute::Target) &&
src2->attributes.test(Attribute::Target) &&
((src1->mayBeDummyArgOrHostAssoc() && src2->mayBeActualArg()) ||
(src2->mayBeDummyArgOrHostAssoc() && src1->mayBeActualArg()))) {
LLVM_DEBUG(llvm::dbgs()
<< " aliasing between targets where one is a dummy arg\n");
return AliasResult::MayAlias;
}
// Aliasing for dummy arg that is a pointer.
//
// The address of a pointer dummy arg (but not a pointer component of a dummy
// arg) may alias the address of either (1) a non-local pointer or (2) thus a
// non-local composite with a pointer component. A non-local might be a
// global or another dummy arg. The following is an example of the global
// composite case:
//
// module m
// type t
// real, pointer :: p
// end type
// type(t) :: a
// type(t) :: b
// contains
// subroutine test(p)
// real, pointer :: p
// p = 42
// a = b
// print *, p
// end subroutine
// end module
// program main
// use m
// real, target :: x1 = 1
// real, target :: x2 = 2
// a%p => x1
// b%p => x2
// call test(a%p)
// end
//
// The dummy argument p is an alias for a%p, even for the purposes of pointer
// association during the assignment a = b. Thus, the program should print 2.
//
// The same is true when p is HostAssoc. For example, we might replace the
// test subroutine above with:
//
// subroutine test(p)
// real, pointer :: p
// call internal()
// contains
// subroutine internal()
// p = 42
// a = b
// print *, p
// end subroutine
// end subroutine
if ((src1->mayBePtrDummyArgOrHostAssoc() &&
src2->mayBeActualArgWithPtr(val2)) ||
(src2->mayBePtrDummyArgOrHostAssoc() &&
src1->mayBeActualArgWithPtr(val1))) {
LLVM_DEBUG(llvm::dbgs()
<< " aliasing between pointer dummy arg and either pointer or "
<< "composite with pointer component\n");
return AliasResult::MayAlias;
}
return AliasResult::NoAlias;
}
//===----------------------------------------------------------------------===//
// AliasAnalysis: getModRef
//===----------------------------------------------------------------------===//
static bool isSavedLocal(const fir::AliasAnalysis::Source &src) {
if (auto symRef = llvm::dyn_cast<mlir::SymbolRefAttr>(src.origin.u)) {
auto [nameKind, deconstruct] =
fir::NameUniquer::deconstruct(symRef.getLeafReference().getValue());
return nameKind == fir::NameUniquer::NameKind::VARIABLE &&
!deconstruct.procs.empty();
}
return false;
}
static bool isCallToFortranUserProcedure(fir::CallOp call) {
// TODO: indirect calls are excluded by these checks. Maybe some attribute is
// needed to flag user calls in this case.
if (fir::hasBindcAttr(call))
return true;
if (std::optional<mlir::SymbolRefAttr> callee = call.getCallee())
return fir::NameUniquer::deconstruct(callee->getLeafReference().getValue())
.first == fir::NameUniquer::NameKind::PROCEDURE;
return false;
}
static ModRefResult getCallModRef(fir::CallOp call, mlir::Value var) {
// TODO: limit to Fortran functions??
// 1. Detect variables that can be accessed indirectly.
fir::AliasAnalysis aliasAnalysis;
fir::AliasAnalysis::Source varSrc = aliasAnalysis.getSource(var);
// If the variable is not a user variable, we cannot safely assume that
// Fortran semantics apply (e.g., a bare alloca/allocmem result may very well
// be placed in an allocatable/pointer descriptor and escape).
// All the logic below is based on Fortran semantics and only holds if this
// is a call to a procedure from the Fortran source and this is a variable
// from the Fortran source. Compiler generated temporaries or functions may
// not adhere to this semantic.
// TODO: add some opt-in or op-out mechanism for compiler generated temps.
// An example of something currently problematic is the allocmem generated for
// ALLOCATE of allocatable target. It currently does not have the target
// attribute, which would lead this analysis to believe it cannot escape.
if (!varSrc.isFortranUserVariable() || !isCallToFortranUserProcedure(call))
return ModRefResult::getModAndRef();
// Pointer and target may have been captured.
if (varSrc.isTargetOrPointer())
return ModRefResult::getModAndRef();
// Host associated variables may be addressed indirectly via an internal
// function call, whether the call is in the parent or an internal procedure.
// Note that the host associated/internal procedure may be referenced
// indirectly inside calls to non internal procedure. This is because internal
// procedures may be captured or passed. As this is tricky to analyze, always
// consider such variables may be accessed in any calls.
if (varSrc.kind == fir::AliasAnalysis::SourceKind::HostAssoc ||
varSrc.isCapturedInInternalProcedure)
return ModRefResult::getModAndRef();
// At that stage, it has been ruled out that local (including the saved ones)
// and dummy cannot be indirectly accessed in the call.
if (varSrc.kind != fir::AliasAnalysis::SourceKind::Allocate &&
!varSrc.isDummyArgument()) {
if (varSrc.kind != fir::AliasAnalysis::SourceKind::Global ||
!isSavedLocal(varSrc))
return ModRefResult::getModAndRef();
}
// 2. Check if the variable is passed via the arguments.
for (auto arg : call.getArgs()) {
if (fir::conformsWithPassByRef(arg.getType()) &&
!aliasAnalysis.alias(arg, var).isNo()) {
// TODO: intent(in) would allow returning Ref here. This can be obtained
// in the func.func attributes for direct calls, but the module lookup is
// linear with the number of MLIR symbols, which would introduce a pseudo
// quadratic behavior num_calls * num_func.
return ModRefResult::getModAndRef();
}
}
// The call cannot access the variable.
return ModRefResult::getNoModRef();
}
/// This is mostly inspired by MLIR::LocalAliasAnalysis with 2 notable
/// differences 1) Regions are not handled here but will be handled by a data
/// flow analysis to come 2) Allocate and Free effects are considered
/// modifying
ModRefResult AliasAnalysis::getModRef(Operation *op, Value location) {
MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op);
if (!interface) {
if (auto call = llvm::dyn_cast<fir::CallOp>(op))
return getCallModRef(call, location);
return ModRefResult::getModAndRef();
}
// Build a ModRefResult by merging the behavior of the effects of this
// operation.
SmallVector<MemoryEffects::EffectInstance> effects;
interface.getEffects(effects);
ModRefResult result = ModRefResult::getNoModRef();
for (const MemoryEffects::EffectInstance &effect : effects) {
// Check for an alias between the effect and our memory location.
AliasResult aliasResult = AliasResult::MayAlias;
if (Value effectValue = effect.getValue())
aliasResult = alias(effectValue, location);
// If we don't alias, ignore this effect.
if (aliasResult.isNo())
continue;
// Merge in the corresponding mod or ref for this effect.
if (isa<MemoryEffects::Read>(effect.getEffect()))
result = result.merge(ModRefResult::getRef());
else
result = result.merge(ModRefResult::getMod());
if (result.isModAndRef())
break;
}
return result;
}
ModRefResult AliasAnalysis::getModRef(mlir::Region ®ion,
mlir::Value location) {
ModRefResult result = ModRefResult::getNoModRef();
for (mlir::Operation &op : region.getOps()) {
if (op.hasTrait<mlir::OpTrait::HasRecursiveMemoryEffects>()) {
for (mlir::Region &subRegion : op.getRegions()) {
result = result.merge(getModRef(subRegion, location));
// Fast return is already mod and ref.
if (result.isModAndRef())
return result;
}
// In MLIR, RecursiveMemoryEffects can be combined with
// MemoryEffectOpInterface to describe extra effects on top of the
// effects of the nested operations. However, the presence of
// RecursiveMemoryEffects and the absence of MemoryEffectOpInterface
// implies the operation has no other memory effects than the one of its
// nested operations.
if (!mlir::isa<mlir::MemoryEffectOpInterface>(op))
continue;
}
result = result.merge(getModRef(&op, location));
if (result.isModAndRef())
return result;
}
return result;
}
AliasAnalysis::Source AliasAnalysis::getSource(mlir::Value v,
bool getLastInstantiationPoint) {
auto *defOp = v.getDefiningOp();
SourceKind type{SourceKind::Unknown};
mlir::Type ty;
bool breakFromLoop{false};
bool approximateSource{false};
bool isCapturedInInternalProcedure{false};
bool followBoxData{mlir::isa<fir::BaseBoxType>(v.getType())};
bool isBoxRef{fir::isa_ref_type(v.getType()) &&
mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(v.getType()))};
bool followingData = !isBoxRef;
mlir::SymbolRefAttr global;
Source::Attributes attributes;
mlir::Operation *instantiationPoint{nullptr};
while (defOp && !breakFromLoop) {
ty = defOp->getResultTypes()[0];
llvm::TypeSwitch<Operation *>(defOp)
.Case<hlfir::AsExprOp>([&](auto op) {
v = op.getVar();
defOp = v.getDefiningOp();
})
.Case<hlfir::AssociateOp>([&](auto op) {
mlir::Value source = op.getSource();
if (fir::isa_trivial(source.getType())) {
// Trivial values will always use distinct temp memory,
// so we can classify this as Allocate and stop.
type = SourceKind::Allocate;
breakFromLoop = true;
} else {
// AssociateOp may reuse the expression storage,
// so we have to trace further.
v = source;
defOp = v.getDefiningOp();
}
})
.Case<fir::AllocaOp, fir::AllocMemOp>([&](auto op) {
// Unique memory allocation.
type = SourceKind::Allocate;
breakFromLoop = true;
})
.Case<fir::ConvertOp>([&](auto op) {
// Skip ConvertOp's and track further through the operand.
v = op->getOperand(0);
defOp = v.getDefiningOp();
})
.Case<fir::PackArrayOp>([&](auto op) {
// The packed array is not distinguishable from the original
// array, so skip PackArrayOp and track further through
// the array operand.
v = op.getArray();
defOp = v.getDefiningOp();
approximateSource = true;
})
.Case<fir::BoxAddrOp>([&](auto op) {
v = op->getOperand(0);
defOp = v.getDefiningOp();
if (mlir::isa<fir::BaseBoxType>(v.getType()))
followBoxData = true;
})
.Case<fir::ArrayCoorOp, fir::CoordinateOp>([&](auto op) {
if (isPointerReference(ty))
attributes.set(Attribute::Pointer);
v = op->getOperand(0);
defOp = v.getDefiningOp();
if (mlir::isa<fir::BaseBoxType>(v.getType()))
followBoxData = true;
approximateSource = true;
})
.Case<fir::EmboxOp, fir::ReboxOp>([&](auto op) {
if (followBoxData) {
v = op->getOperand(0);
defOp = v.getDefiningOp();
} else
breakFromLoop = true;
})
.Case<fir::LoadOp>([&](auto op) {
// If load is inside target and it points to mapped item,
// continue tracking.
Operation *loadMemrefOp = op.getMemref().getDefiningOp();
bool isDeclareOp =
llvm::isa_and_present<fir::DeclareOp>(loadMemrefOp) ||
llvm::isa_and_present<hlfir::DeclareOp>(loadMemrefOp);
if (isDeclareOp &&
llvm::isa<omp::TargetOp>(loadMemrefOp->getParentOp())) {
v = op.getMemref();
defOp = v.getDefiningOp();
return;
}
// If we are loading a box reference, but following the data,
// we gather the attributes of the box to populate the source
// and stop tracking.
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty);
boxTy && followingData) {
if (mlir::isa<fir::PointerType>(boxTy.getEleTy()))
attributes.set(Attribute::Pointer);
auto boxSrc = getSource(op.getMemref());
attributes |= boxSrc.attributes;
approximateSource |= boxSrc.approximateSource;
isCapturedInInternalProcedure |=
boxSrc.isCapturedInInternalProcedure;
global = llvm::dyn_cast<mlir::SymbolRefAttr>(boxSrc.origin.u);
if (global) {
type = SourceKind::Global;
} else {
auto def = llvm::cast<mlir::Value>(boxSrc.origin.u);
// TODO: Add support to fir.allocmem
if (auto allocOp = def.template getDefiningOp<fir::AllocaOp>()) {
v = def;
defOp = v.getDefiningOp();
type = SourceKind::Allocate;
} else if (isDummyArgument(def)) {
defOp = nullptr;
v = def;
} else {
type = SourceKind::Indirect;
}
}
breakFromLoop = true;
return;
}
// No further tracking for addresses loaded from memory for now.
type = SourceKind::Indirect;
breakFromLoop = true;
})
.Case<fir::AddrOfOp>([&](auto op) {
// Address of a global scope object.
ty = v.getType();
type = SourceKind::Global;
if (hasGlobalOpTargetAttr(v, op))
attributes.set(Attribute::Target);
// TODO: Take followBoxData into account when setting the pointer
// attribute
if (isPointerReference(ty))
attributes.set(Attribute::Pointer);
global = llvm::cast<fir::AddrOfOp>(op).getSymbol();
breakFromLoop = true;
})
.Case<hlfir::DeclareOp, fir::DeclareOp>([&](auto op) {
bool isPrivateItem = false;
if (omp::BlockArgOpenMPOpInterface argIface =
dyn_cast<omp::BlockArgOpenMPOpInterface>(op->getParentOp())) {
Value ompValArg;
llvm::TypeSwitch<Operation *>(op->getParentOp())
.template Case<omp::TargetOp>([&](auto targetOp) {
// If declare operation is inside omp target region,
// continue alias analysis outside the target region
for (auto [opArg, blockArg] : llvm::zip_equal(
targetOp.getMapVars(), argIface.getMapBlockArgs())) {
if (blockArg == op.getMemref()) {
omp::MapInfoOp mapInfo =
llvm::cast<omp::MapInfoOp>(opArg.getDefiningOp());
ompValArg = mapInfo.getVarPtr();
return;
}
}
// If given operation does not reflect mapping item,
// check private clause
isPrivateItem = isPrivateArg(argIface, targetOp, op);
})
.template Case<omp::DistributeOp, omp::ParallelOp,
omp::SectionsOp, omp::SimdOp, omp::SingleOp,
omp::TaskloopOp, omp::TaskOp, omp::WsloopOp>(
[&](auto privateOp) {
isPrivateItem = isPrivateArg(argIface, privateOp, op);
});
if (ompValArg) {
v = ompValArg;
defOp = ompValArg.getDefiningOp();
return;
}
}
auto varIf = llvm::cast<fir::FortranVariableOpInterface>(defOp);
// While going through a declare operation collect
// the variable attributes from it. Right now, some
// of the attributes are duplicated, e.g. a TARGET dummy
// argument has the target attribute both on its declare
// operation and on the entry block argument.
// In case of host associated use, the declare operation
// is the only carrier of the variable attributes,
// so we have to collect them here.
attributes |= getAttrsFromVariable(varIf);
isCapturedInInternalProcedure |=
varIf.isCapturedInInternalProcedure();
if (varIf.isHostAssoc()) {
// Do not track past such DeclareOp, because it does not
// currently provide any useful information. The host associated
// access will end up dereferencing the host association tuple,
// so we may as well stop right now.
v = defOp->getResult(0);
// TODO: if the host associated variable is a dummy argument
// of the host, I think, we can treat it as SourceKind::Argument
// for the purpose of alias analysis inside the internal procedure.
type = SourceKind::HostAssoc;
breakFromLoop = true;
return;
}
if (getLastInstantiationPoint) {
// Fetch only the innermost instantiation point.
if (!instantiationPoint)
instantiationPoint = op;
if (op.getDummyScope()) {
// Do not track past DeclareOp that has the dummy_scope
// operand. This DeclareOp is known to represent
// a dummy argument for some runtime instantiation
// of a procedure.
type = SourceKind::Argument;
breakFromLoop = true;
return;
}
} else {
instantiationPoint = op;
}
if (isPrivateItem) {
type = SourceKind::Allocate;
breakFromLoop = true;
return;
}
// TODO: Look for the fortran attributes present on the operation
// Track further through the operand
v = op.getMemref();
defOp = v.getDefiningOp();
})
.Case<hlfir::DesignateOp>([&](auto op) {
auto varIf = llvm::cast<fir::FortranVariableOpInterface>(defOp);
attributes |= getAttrsFromVariable(varIf);
// Track further through the memory indexed into
// => if the source arrays/structures don't alias then nor do the
// results of hlfir.designate
v = op.getMemref();
defOp = v.getDefiningOp();
// TODO: there will be some cases which provably don't alias if one
// takes into account the component or indices, which are currently
// ignored here - leading to false positives
// because of this limitation, we need to make sure we never return
// MustAlias after going through a designate operation
approximateSource = true;
if (mlir::isa<fir::BaseBoxType>(v.getType()))
followBoxData = true;
})
.Default([&](auto op) {
defOp = nullptr;
breakFromLoop = true;
});
}
if (!defOp && type == SourceKind::Unknown) {
// Check if the memory source is coming through a dummy argument.
if (isDummyArgument(v)) {
type = SourceKind::Argument;
ty = v.getType();
if (fir::valueHasFirAttribute(v, fir::getTargetAttrName()))
attributes.set(Attribute::Target);
if (isPointerReference(ty))
attributes.set(Attribute::Pointer);
} else if (isEvaluateInMemoryBlockArg(v)) {
// hlfir.eval_in_mem block operands is allocated by the operation.
type = SourceKind::Allocate;
ty = v.getType();
}
}
if (type == SourceKind::Global) {
return {{global, instantiationPoint, followingData},
type,
ty,
attributes,
approximateSource,
isCapturedInInternalProcedure};
}
return {{v, instantiationPoint, followingData},
type,
ty,
attributes,
approximateSource,
isCapturedInInternalProcedure};
}
} // namespace fir
|