1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
//===-- lib/runtime/derived-api.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Runtime/derived-api.h"
#include "flang-rt/runtime/derived.h"
#include "flang-rt/runtime/descriptor.h"
#include "flang-rt/runtime/terminator.h"
#include "flang-rt/runtime/tools.h"
#include "flang-rt/runtime/type-info.h"
namespace Fortran::runtime {
extern "C" {
RT_EXT_API_GROUP_BEGIN
void RTDEF(Initialize)(
const Descriptor &descriptor, const char *sourceFile, int sourceLine) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noInitializationNeeded()) {
Terminator terminator{sourceFile, sourceLine};
Initialize(descriptor, *derived, terminator);
}
}
}
}
void RTDEF(InitializeClone)(const Descriptor &clone, const Descriptor &orig,
const char *sourceFile, int sourceLine) {
if (const DescriptorAddendum * addendum{clone.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
Terminator terminator{sourceFile, sourceLine};
InitializeClone(clone, orig, *derived, terminator);
}
}
}
void RTDEF(Destroy)(const Descriptor &descriptor) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noDestructionNeeded()) {
// TODO: Pass source file & line information to the API
// so that a good Terminator can be passed
Destroy(descriptor, true, *derived, nullptr);
}
}
}
}
void RTDEF(Finalize)(
const Descriptor &descriptor, const char *sourceFile, int sourceLine) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noFinalizationNeeded()) {
Terminator terminator{sourceFile, sourceLine};
Finalize(descriptor, *derived, &terminator);
}
}
}
}
bool RTDEF(ClassIs)(
const Descriptor &descriptor, const typeInfo::DerivedType &derivedType) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (derived == &derivedType) {
return true;
}
const typeInfo::DerivedType *parent{derived->GetParentType()};
while (parent) {
if (parent == &derivedType) {
return true;
}
parent = parent->GetParentType();
}
}
}
return false;
}
static RT_API_ATTRS const typeInfo::DerivedType *GetDerivedType(
const Descriptor &desc) {
if (const DescriptorAddendum * addendum{desc.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
return derived;
}
}
return nullptr;
}
bool RTDEF(SameTypeAs)(const Descriptor &a, const Descriptor &b) {
auto aType{a.raw().type};
auto bType{b.raw().type};
if ((aType != CFI_type_struct && aType != CFI_type_other) ||
(bType != CFI_type_struct && bType != CFI_type_other)) {
// If either type is intrinsic, they must match.
return aType == bType;
} else if (const typeInfo::DerivedType * derivedTypeA{GetDerivedType(a)}) {
if (const typeInfo::DerivedType * derivedTypeB{GetDerivedType(b)}) {
if (derivedTypeA == derivedTypeB) {
return true;
} else if (const typeInfo::DerivedType *
uninstDerivedTypeA{derivedTypeA->uninstantiatedType()}) {
// There are KIND type parameters, are these the same type if those
// are ignored?
const typeInfo::DerivedType *uninstDerivedTypeB{
derivedTypeB->uninstantiatedType()};
return uninstDerivedTypeA == uninstDerivedTypeB;
}
}
}
return false;
}
bool RTDEF(ExtendsTypeOf)(const Descriptor &a, const Descriptor &mold) {
auto aType{a.raw().type};
auto moldType{mold.raw().type};
if ((aType != CFI_type_struct && aType != CFI_type_other) ||
(moldType != CFI_type_struct && moldType != CFI_type_other)) {
// If either type is intrinsic, they must match.
return aType == moldType;
} else if (const typeInfo::DerivedType *
derivedTypeMold{GetDerivedType(mold)}) {
// If A is unlimited polymorphic and is either a disassociated pointer or
// unallocated allocatable, the result is false.
// Otherwise if the dynamic type of A or MOLD is extensible, the result is
// true if and only if the dynamic type of A is an extension type of the
// dynamic type of MOLD.
for (const typeInfo::DerivedType *derivedTypeA{GetDerivedType(a)};
derivedTypeA; derivedTypeA = derivedTypeA->GetParentType()) {
if (derivedTypeA == derivedTypeMold) {
return true;
}
}
return false;
} else {
// MOLD is unlimited polymorphic and unallocated/disassociated.
return true;
}
}
void RTDEF(DestroyWithoutFinalization)(const Descriptor &descriptor) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noDestructionNeeded()) {
Destroy(descriptor, /*finalize=*/false, *derived, nullptr);
}
}
}
}
RT_EXT_API_GROUP_END
} // extern "C"
} // namespace Fortran::runtime
|