aboutsummaryrefslogtreecommitdiff
path: root/flang-rt/lib/runtime/assign.cpp
blob: 7cf4147a94a954c45f9a69bd5af7c36c5981f1be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
//===-- lib/runtime/assign.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Runtime/assign.h"
#include "flang-rt/runtime/assign-impl.h"
#include "flang-rt/runtime/derived.h"
#include "flang-rt/runtime/descriptor.h"
#include "flang-rt/runtime/stat.h"
#include "flang-rt/runtime/terminator.h"
#include "flang-rt/runtime/tools.h"
#include "flang-rt/runtime/type-info.h"
#include "flang-rt/runtime/work-queue.h"

namespace Fortran::runtime {

// Predicate: is the left-hand side of an assignment an allocated allocatable
// that must be deallocated?
static inline RT_API_ATTRS bool MustDeallocateLHS(
    Descriptor &to, const Descriptor &from, Terminator &terminator, int flags) {
  // Top-level assignments to allocatable variables (*not* components)
  // may first deallocate existing content if there's about to be a
  // change in type or shape; see F'2018 10.2.1.3(3).
  if (!(flags & MaybeReallocate)) {
    return false;
  }
  if (!to.IsAllocatable() || !to.IsAllocated()) {
    return false;
  }
  if (to.type() != from.type()) {
    return true;
  }
  if (!(flags & ExplicitLengthCharacterLHS) && to.type().IsCharacter() &&
      to.ElementBytes() != from.ElementBytes()) {
    return true;
  }
  if (flags & PolymorphicLHS) {
    DescriptorAddendum *toAddendum{to.Addendum()};
    const typeInfo::DerivedType *toDerived{
        toAddendum ? toAddendum->derivedType() : nullptr};
    const DescriptorAddendum *fromAddendum{from.Addendum()};
    const typeInfo::DerivedType *fromDerived{
        fromAddendum ? fromAddendum->derivedType() : nullptr};
    if (toDerived != fromDerived) {
      return true;
    }
    if (fromDerived) {
      // Distinct LEN parameters? Deallocate
      std::size_t lenParms{fromDerived->LenParameters()};
      for (std::size_t j{0}; j < lenParms; ++j) {
        if (toAddendum->LenParameterValue(j) !=
            fromAddendum->LenParameterValue(j)) {
          return true;
        }
      }
    }
  }
  if (from.rank() > 0) {
    // Distinct shape? Deallocate
    int rank{to.rank()};
    for (int j{0}; j < rank; ++j) {
      const auto &toDim{to.GetDimension(j)};
      const auto &fromDim{from.GetDimension(j)};
      if (toDim.Extent() != fromDim.Extent()) {
        return true;
      }
      if ((flags & UpdateLHSBounds) &&
          toDim.LowerBound() != fromDim.LowerBound()) {
        return true;
      }
    }
  }
  // Not reallocating; may have to update bounds
  if (flags & UpdateLHSBounds) {
    int rank{to.rank()};
    for (int j{0}; j < rank; ++j) {
      to.GetDimension(j).SetLowerBound(from.GetDimension(j).LowerBound());
    }
  }
  return false;
}

// Utility: allocate the allocatable left-hand side, either because it was
// originally deallocated or because it required reallocation
static RT_API_ATTRS int AllocateAssignmentLHS(
    Descriptor &to, const Descriptor &from, Terminator &terminator, int flags) {
  to.raw().type = from.raw().type;
  if (!(flags & ExplicitLengthCharacterLHS)) {
    to.raw().elem_len = from.ElementBytes();
  }
  const typeInfo::DerivedType *derived{nullptr};
  DescriptorAddendum *toAddendum{to.Addendum()};
  if (const DescriptorAddendum * fromAddendum{from.Addendum()}) {
    derived = fromAddendum->derivedType();
    if (toAddendum) {
      toAddendum->set_derivedType(derived);
      std::size_t lenParms{derived ? derived->LenParameters() : 0};
      for (std::size_t j{0}; j < lenParms; ++j) {
        toAddendum->SetLenParameterValue(j, fromAddendum->LenParameterValue(j));
      }
    }
  } else if (toAddendum) {
    toAddendum->set_derivedType(nullptr);
  }
  // subtle: leave bounds in place when "from" is scalar (10.2.1.3(3))
  int rank{from.rank()};
  auto stride{static_cast<SubscriptValue>(to.ElementBytes())};
  for (int j{0}; j < rank; ++j) {
    auto &toDim{to.GetDimension(j)};
    const auto &fromDim{from.GetDimension(j)};
    toDim.SetBounds(fromDim.LowerBound(), fromDim.UpperBound());
    toDim.SetByteStride(stride);
    stride *= toDim.Extent();
  }
  return ReturnError(terminator, to.Allocate(kNoAsyncObject));
}

// least <= 0, most >= 0
static RT_API_ATTRS void MaximalByteOffsetRange(
    const Descriptor &desc, std::int64_t &least, std::int64_t &most) {
  least = most = 0;
  if (desc.ElementBytes() == 0) {
    return;
  }
  int n{desc.raw().rank};
  for (int j{0}; j < n; ++j) {
    const auto &dim{desc.GetDimension(j)};
    auto extent{dim.Extent()};
    if (extent > 0) {
      auto sm{dim.ByteStride()};
      if (sm < 0) {
        least += (extent - 1) * sm;
      } else {
        most += (extent - 1) * sm;
      }
    }
  }
  most += desc.ElementBytes() - 1;
}

static inline RT_API_ATTRS bool RangesOverlap(const char *aStart,
    const char *aEnd, const char *bStart, const char *bEnd) {
  return aEnd >= bStart && bEnd >= aStart;
}

// Predicate: could the left-hand and right-hand sides of the assignment
// possibly overlap in memory?  Note that the descriptors themeselves
// are included in the test.
static RT_API_ATTRS bool MayAlias(const Descriptor &x, const Descriptor &y) {
  const char *xBase{x.OffsetElement()};
  const char *yBase{y.OffsetElement()};
  if (!xBase || !yBase) {
    return false; // not both allocated
  }
  const char *xDesc{reinterpret_cast<const char *>(&x)};
  const char *xDescLast{xDesc + x.SizeInBytes() - 1};
  const char *yDesc{reinterpret_cast<const char *>(&y)};
  const char *yDescLast{yDesc + y.SizeInBytes() - 1};
  std::int64_t xLeast, xMost, yLeast, yMost;
  MaximalByteOffsetRange(x, xLeast, xMost);
  MaximalByteOffsetRange(y, yLeast, yMost);
  if (RangesOverlap(xDesc, xDescLast, yBase + yLeast, yBase + yMost) ||
      RangesOverlap(yDesc, yDescLast, xBase + xLeast, xBase + xMost)) {
    // A descriptor overlaps with the storage described by the other;
    // this can arise when an allocatable or pointer component is
    // being assigned to/from.
    return true;
  }
  if (!RangesOverlap(
          xBase + xLeast, xBase + xMost, yBase + yLeast, yBase + yMost)) {
    return false; // no storage overlap
  }
  // TODO: check dimensions: if any is independent, return false
  return true;
}

static RT_API_ATTRS void DoScalarDefinedAssignment(const Descriptor &to,
    const Descriptor &from, const typeInfo::DerivedType &derived,
    const typeInfo::SpecialBinding &special) {
  bool toIsDesc{special.IsArgDescriptor(0)};
  bool fromIsDesc{special.IsArgDescriptor(1)};
  const auto *bindings{
      derived.binding().OffsetElement<const typeInfo::Binding>()};
  if (toIsDesc) {
    if (fromIsDesc) {
      auto *p{special.GetProc<void (*)(const Descriptor &, const Descriptor &)>(
          bindings)};
      p(to, from);
    } else {
      auto *p{special.GetProc<void (*)(const Descriptor &, void *)>(bindings)};
      p(to, from.raw().base_addr);
    }
  } else {
    if (fromIsDesc) {
      auto *p{special.GetProc<void (*)(void *, const Descriptor &)>(bindings)};
      p(to.raw().base_addr, from);
    } else {
      auto *p{special.GetProc<void (*)(void *, void *)>(bindings)};
      p(to.raw().base_addr, from.raw().base_addr);
    }
  }
}

static RT_API_ATTRS void DoElementalDefinedAssignment(const Descriptor &to,
    const Descriptor &from, const typeInfo::DerivedType &derived,
    const typeInfo::SpecialBinding &special) {
  SubscriptValue toAt[maxRank], fromAt[maxRank];
  to.GetLowerBounds(toAt);
  from.GetLowerBounds(fromAt);
  StaticDescriptor<maxRank, true, 8 /*?*/> statDesc[2];
  Descriptor &toElementDesc{statDesc[0].descriptor()};
  Descriptor &fromElementDesc{statDesc[1].descriptor()};
  toElementDesc.Establish(derived, nullptr, 0, nullptr, CFI_attribute_pointer);
  fromElementDesc.Establish(
      derived, nullptr, 0, nullptr, CFI_attribute_pointer);
  for (std::size_t toElements{to.InlineElements()}; toElements-- > 0;
      to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
    toElementDesc.set_base_addr(to.Element<char>(toAt));
    fromElementDesc.set_base_addr(from.Element<char>(fromAt));
    DoScalarDefinedAssignment(toElementDesc, fromElementDesc, derived, special);
  }
}

template <typename CHAR>
static RT_API_ATTRS void BlankPadCharacterAssignment(Descriptor &to,
    const Descriptor &from, SubscriptValue toAt[], SubscriptValue fromAt[],
    std::size_t elements, std::size_t toElementBytes,
    std::size_t fromElementBytes) {
  std::size_t padding{(toElementBytes - fromElementBytes) / sizeof(CHAR)};
  std::size_t copiedCharacters{fromElementBytes / sizeof(CHAR)};
  for (; elements-- > 0;
       to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
    CHAR *p{to.Element<CHAR>(toAt)};
    Fortran::runtime::memmove(
        p, from.Element<std::add_const_t<CHAR>>(fromAt), fromElementBytes);
    p += copiedCharacters;
    for (auto n{padding}; n-- > 0;) {
      *p++ = CHAR{' '};
    }
  }
}

RT_OFFLOAD_API_GROUP_BEGIN

// Common implementation of assignments, both intrinsic assignments and
// those cases of polymorphic user-defined ASSIGNMENT(=) TBPs that could not
// be resolved in semantics.  Most assignment statements do not need any
// of the capabilities of this function -- but when the LHS is allocatable,
// the type might have a user-defined ASSIGNMENT(=), or the type might be
// finalizable, this function should be used.
// When "to" is not a whole allocatable, "from" is an array, and defined
// assignments are not used, "to" and "from" only need to have the same number
// of elements, but their shape need not to conform (the assignment is done in
// element sequence order). This facilitates some internal usages, like when
// dealing with array constructors.
RT_API_ATTRS void Assign(Descriptor &to, const Descriptor &from,
    Terminator &terminator, int flags, MemmoveFct memmoveFct) {
  WorkQueue workQueue{terminator};
  if (workQueue.BeginAssign(to, from, flags, memmoveFct, nullptr) ==
      StatContinue) {
    workQueue.Run();
  }
}

RT_API_ATTRS int AssignTicket::Begin(WorkQueue &workQueue) {
  bool mustDeallocateLHS{(flags_ & DeallocateLHS) ||
      MustDeallocateLHS(to_, *from_, workQueue.terminator(), flags_)};
  DescriptorAddendum *toAddendum{to_.Addendum()};
  toDerived_ = toAddendum ? toAddendum->derivedType() : nullptr;
  if (toDerived_ && (flags_ & NeedFinalization) &&
      toDerived_->noFinalizationNeeded()) {
    flags_ &= ~NeedFinalization;
  }
  if (MayAlias(to_, *from_)) {
    if (mustDeallocateLHS) {
      // Convert the LHS into a temporary, then make it look deallocated.
      toDeallocate_ = &tempDescriptor_.descriptor();
      std::memcpy(
          reinterpret_cast<void *>(toDeallocate_), &to_, to_.SizeInBytes());
      to_.set_base_addr(nullptr);
      if (toDerived_ && (flags_ & NeedFinalization)) {
        int status{workQueue.BeginFinalize(*toDeallocate_, *toDerived_)};
        if (status == StatContinue) {
          // tempDescriptor_ state must outlive pending child ticket
          persist_ = true;
        } else if (status != StatOk) {
          return status;
        }
        flags_ &= ~NeedFinalization;
      }
    } else if (!IsSimpleMemmove()) {
      // Handle LHS/RHS aliasing by copying RHS into a temp, then
      // recursively assigning from that temp.
      auto descBytes{from_->SizeInBytes()};
      Descriptor &newFrom{tempDescriptor_.descriptor()};
      persist_ = true; // tempDescriptor_ state must outlive child tickets
      std::memcpy(reinterpret_cast<void *>(&newFrom), from_, descBytes);
      // Pretend the temporary descriptor is for an ALLOCATABLE
      // entity, otherwise, the Deallocate() below will not
      // free the descriptor memory.
      newFrom.raw().attribute = CFI_attribute_allocatable;
      if (int stat{ReturnError(
              workQueue.terminator(), newFrom.Allocate(kNoAsyncObject))};
          stat != StatOk) {
        if (stat == StatContinue) {
          persist_ = true;
        }
        return stat;
      }
      if (HasDynamicComponent(*from_)) {
        // If 'from' has allocatable/automatic component, we cannot
        // just make a shallow copy of the descriptor member.
        // This will still leave data overlap in 'to' and 'newFrom'.
        // For example:
        //   type t
        //     character, allocatable :: c(:)
        //   end type t
        //   type(t) :: x(3)
        //   x(2:3) = x(1:2)
        // We have to make a deep copy into 'newFrom' in this case.
        if (const DescriptorAddendum *addendum{newFrom.Addendum()}) {
          if (const auto *derived{addendum->derivedType()}) {
            if (!derived->noInitializationNeeded()) {
              if (int status{workQueue.BeginInitialize(newFrom, *derived)};
                  status != StatOk && status != StatContinue) {
                return status;
              }
            }
          }
        }
        static constexpr int nestedFlags{MaybeReallocate | PolymorphicLHS};
        if (int status{workQueue.BeginAssign(
                newFrom, *from_, nestedFlags, memmoveFct_, nullptr)};
            status != StatOk && status != StatContinue) {
          return status;
        }
      } else {
        ShallowCopy(newFrom, *from_, true, from_->IsContiguous());
      }
      from_ = &newFrom; // this is why from_ has to be a pointer
      flags_ &= NeedFinalization | ComponentCanBeDefinedAssignment |
          ExplicitLengthCharacterLHS | CanBeDefinedAssignment;
      toDeallocate_ = &newFrom;
    }
  }
  if (to_.IsAllocatable()) {
    if (mustDeallocateLHS) {
      if (!toDeallocate_ && to_.IsAllocated()) {
        toDeallocate_ = &to_;
      }
    } else if (to_.rank() != from_->rank() && !to_.IsAllocated()) {
      workQueue.terminator().Crash("Assign: mismatched ranks (%d != %d) in "
                                   "assignment to unallocated allocatable",
          to_.rank(), from_->rank());
    }
  } else if (!to_.IsAllocated()) {
    workQueue.terminator().Crash(
        "Assign: left-hand side variable is neither allocated nor allocatable");
  }
  if (toDerived_ && to_.IsAllocated()) {
    // Schedule finalization or destruction of the LHS.
    if (flags_ & NeedFinalization) {
      if (int status{workQueue.BeginFinalize(to_, *toDerived_)};
          status != StatOk && status != StatContinue) {
        return status;
      }
    } else if (!toDerived_->noDestructionNeeded()) {
      if (int status{
              workQueue.BeginDestroy(to_, *toDerived_, /*finalize=*/false)};
          status != StatOk && status != StatContinue) {
        return status;
      }
    }
  }
  return StatContinue;
}

RT_API_ATTRS int AssignTicket::Continue(WorkQueue &workQueue) {
  if (done_) {
    // All child tickets are complete; can release this ticket's state.
    if (toDeallocate_) {
      toDeallocate_->Deallocate();
    }
    return StatOk;
  }
  // All necessary finalization or destruction that was initiated by Begin()
  // has been completed.  Deallocation may be pending, and if it's for the LHS,
  // do it now so that the LHS gets reallocated.
  if (toDeallocate_ == &to_) {
    toDeallocate_ = nullptr;
    to_.Deallocate();
  }
  // Allocate the LHS if needed
  if (!to_.IsAllocated()) {
    if (int stat{
            AllocateAssignmentLHS(to_, *from_, workQueue.terminator(), flags_)};
        stat != StatOk) {
      return stat;
    }
    const auto *addendum{to_.Addendum()};
    toDerived_ = addendum ? addendum->derivedType() : nullptr;
    if (toDerived_) {
      if (!toDerived_->noInitializationNeeded()) {
        if (int status{workQueue.BeginInitialize(to_, *toDerived_)};
            status != StatOk) {
          return status;
        }
      }
    }
  }
  // Check for a user-defined assignment type-bound procedure;
  // see 10.2.1.4-5.
  // Note that the aliasing and LHS (re)allocation handling above
  // needs to run even with CanBeDefinedAssignment flag, since
  // Assign() can be invoked recursively for component-wise assignments.
  // The declared type (if known) must be used for generic resolution
  // of ASSIGNMENT(=) to a binding, but that binding can be overridden.
  if (declaredType_ && (flags_ & CanBeDefinedAssignment)) {
    if (to_.rank() == 0) {
      if (const auto *special{declaredType_->FindSpecialBinding(
              typeInfo::SpecialBinding::Which::ScalarAssignment)}) {
        DoScalarDefinedAssignment(to_, *from_, *toDerived_, *special);
        done_ = true;
        return StatContinue;
      }
    }
    if (const auto *special{declaredType_->FindSpecialBinding(
            typeInfo::SpecialBinding::Which::ElementalAssignment)}) {
      DoElementalDefinedAssignment(to_, *from_, *toDerived_, *special);
      done_ = true;
      return StatContinue;
    }
  }
  // Intrinsic assignment
  std::size_t toElements{to_.InlineElements()};
  if (from_->rank() > 0) {
    std::size_t fromElements{from_->InlineElements()};
    if (toElements != fromElements) {
      workQueue.terminator().Crash("Assign: mismatching element counts in "
                                   "array assignment (to %zd, from %zd)",
          toElements, fromElements);
    }
  }
  if (to_.type() != from_->type()) {
    workQueue.terminator().Crash(
        "Assign: mismatching types (to code %d != from code %d)",
        to_.type().raw(), from_->type().raw());
  }
  std::size_t toElementBytes{to_.ElementBytes()};
  std::size_t fromElementBytes{from_->ElementBytes()};
  if (toElementBytes > fromElementBytes && !to_.type().IsCharacter()) {
    workQueue.terminator().Crash("Assign: mismatching non-character element "
                                 "sizes (to %zd bytes != from %zd bytes)",
        toElementBytes, fromElementBytes);
  }
  if (toDerived_) {
    if (toDerived_->noDefinedAssignment()) { // componentwise
      if (int status{workQueue.BeginDerivedAssign<true>(
              to_, *from_, *toDerived_, flags_, memmoveFct_, toDeallocate_)};
          status != StatOk && status != StatContinue) {
        return status;
      }
    } else { // elementwise
      if (int status{workQueue.BeginDerivedAssign<false>(
              to_, *from_, *toDerived_, flags_, memmoveFct_, toDeallocate_)};
          status != StatOk && status != StatContinue) {
        return status;
      }
    }
    toDeallocate_ = nullptr;
  } else if (IsSimpleMemmove()) {
    memmoveFct_(to_.raw().base_addr, from_->raw().base_addr,
        toElements * toElementBytes);
  } else {
    // Scalar expansion of the RHS is implied by using the same empty
    // subscript values on each (seemingly) elemental reference into
    // "from".
    SubscriptValue toAt[maxRank];
    to_.GetLowerBounds(toAt);
    SubscriptValue fromAt[maxRank];
    from_->GetLowerBounds(fromAt);
    if (toElementBytes > fromElementBytes) { // blank padding
      switch (to_.type().raw()) {
      case CFI_type_signed_char:
      case CFI_type_char:
        BlankPadCharacterAssignment<char>(to_, *from_, toAt, fromAt, toElements,
            toElementBytes, fromElementBytes);
        break;
      case CFI_type_char16_t:
        BlankPadCharacterAssignment<char16_t>(to_, *from_, toAt, fromAt,
            toElements, toElementBytes, fromElementBytes);
        break;
      case CFI_type_char32_t:
        BlankPadCharacterAssignment<char32_t>(to_, *from_, toAt, fromAt,
            toElements, toElementBytes, fromElementBytes);
        break;
      default:
        workQueue.terminator().Crash(
            "unexpected type code %d in blank padded Assign()",
            to_.type().raw());
      }
    } else { // elemental copies, possibly with character truncation
      for (std::size_t n{toElements}; n-- > 0;
          to_.IncrementSubscripts(toAt), from_->IncrementSubscripts(fromAt)) {
        memmoveFct_(to_.Element<char>(toAt), from_->Element<const char>(fromAt),
            toElementBytes);
      }
    }
  }
  if (persist_) {
    // tempDescriptor_ must outlive pending child ticket(s)
    done_ = true;
    return StatContinue;
  } else {
    if (toDeallocate_) {
      toDeallocate_->Deallocate();
      toDeallocate_ = nullptr;
    }
    return StatOk;
  }
}

template <bool IS_COMPONENTWISE>
RT_API_ATTRS int DerivedAssignTicket<IS_COMPONENTWISE>::Begin(
    WorkQueue &workQueue) {
  if (toIsContiguous_ && fromIsContiguous_ &&
      this->derived_.noDestructionNeeded() &&
      this->derived_.noDefinedAssignment() &&
      this->instance_.rank() == this->from_->rank()) {
    if (std::size_t elementBytes{this->instance_.ElementBytes()};
        elementBytes == this->from_->ElementBytes()) {
      // Fastest path.  Both LHS and RHS are contiguous, RHS is not a scalar
      // to be expanded, the types have the same size, and there are no
      // allocatable components or defined ASSIGNMENT(=) at any level.
      memmoveFct_(this->instance_.template OffsetElement<char>(),
          this->from_->template OffsetElement<const char *>(),
          this->instance_.InlineElements() * elementBytes);
      return StatOk;
    }
  }
  // Use PolymorphicLHS for components so that the right things happen
  // when the components are polymorphic; when they're not, they're both
  // not, and their declared types will match.
  int nestedFlags{MaybeReallocate | PolymorphicLHS};
  if (flags_ & ComponentCanBeDefinedAssignment) {
    nestedFlags |= CanBeDefinedAssignment | ComponentCanBeDefinedAssignment;
  }
  flags_ = nestedFlags;
  // Copy procedure pointer components
  const Descriptor &procPtrDesc{this->derived_.procPtr()};
  bool noDataComponents{this->IsComplete()};
  if (std::size_t numProcPtrs{procPtrDesc.InlineElements()}) {
    for (std::size_t k{0}; k < numProcPtrs; ++k) {
      const auto &procPtr{
          *procPtrDesc.ZeroBasedIndexedElement<typeInfo::ProcPtrComponent>(k)};
      // Loop only over elements
      if (k > 0) {
        Elementwise::Reset();
      }
      for (; !Elementwise::IsComplete(); Elementwise::Advance()) {
        memmoveFct_(this->instance_.template ElementComponent<char>(
                        this->subscripts_, procPtr.offset),
            this->from_->template ElementComponent<const char>(
                this->fromSubscripts_, procPtr.offset),
            sizeof(typeInfo::ProcedurePointer));
      }
    }
    if (noDataComponents) {
      return StatOk;
    }
    Elementwise::Reset();
  }
  if (noDataComponents) {
    return StatOk;
  }
  return StatContinue;
}
template RT_API_ATTRS int DerivedAssignTicket<false>::Begin(WorkQueue &);
template RT_API_ATTRS int DerivedAssignTicket<true>::Begin(WorkQueue &);

template <bool IS_COMPONENTWISE>
RT_API_ATTRS int DerivedAssignTicket<IS_COMPONENTWISE>::Continue(
    WorkQueue &workQueue) {
  while (!this->IsComplete()) {
    // Copy the data components (incl. the parent) first.
    switch (this->component_->genre()) {
    case typeInfo::Component::Genre::Data:
      if (this->component_->category() == TypeCategory::Derived) {
        Descriptor &toCompDesc{this->componentDescriptor_.descriptor()};
        Descriptor &fromCompDesc{this->fromComponentDescriptor_.descriptor()};
        this->component_->CreatePointerDescriptor(toCompDesc, this->instance_,
            workQueue.terminator(), this->subscripts_);
        this->component_->CreatePointerDescriptor(fromCompDesc, *this->from_,
            workQueue.terminator(), this->fromSubscripts_);
        const auto *componentDerived{this->component_->derivedType()};
        this->Advance();
        if (int status{workQueue.BeginAssign(toCompDesc, fromCompDesc, flags_,
                memmoveFct_, componentDerived)};
            status != StatOk) {
          return status;
        }
      } else { // Component has intrinsic type; simply copy raw bytes
        std::size_t componentByteSize{
            this->component_->SizeInBytes(this->instance_)};
        if (IS_COMPONENTWISE && toIsContiguous_ && fromIsContiguous_) {
          std::size_t offset{
              static_cast<std::size_t>(this->component_->offset())};
          char *to{this->instance_.template OffsetElement<char>(offset)};
          const char *from{
              this->from_->template OffsetElement<const char>(offset)};
          std::size_t toElementStride{this->instance_.ElementBytes()};
          std::size_t fromElementStride{
              this->from_->rank() == 0 ? 0 : this->from_->ElementBytes()};
          if (toElementStride == fromElementStride &&
              toElementStride == componentByteSize) {
            memmoveFct_(to, from, this->elements_ * componentByteSize);
          } else {
            for (std::size_t n{this->elements_}; n--;
                to += toElementStride, from += fromElementStride) {
              memmoveFct_(to, from, componentByteSize);
            }
          }
          this->SkipToNextComponent();
        } else {
          memmoveFct_(
              this->instance_.template Element<char>(this->subscripts_) +
                  this->component_->offset(),
              this->from_->template Element<const char>(this->fromSubscripts_) +
                  this->component_->offset(),
              componentByteSize);
          this->Advance();
        }
      }
      break;
    case typeInfo::Component::Genre::Pointer: {
      std::size_t componentByteSize{
          this->component_->SizeInBytes(this->instance_)};
      if (IS_COMPONENTWISE && toIsContiguous_ && fromIsContiguous_) {
        std::size_t offset{
            static_cast<std::size_t>(this->component_->offset())};
        char *to{this->instance_.template OffsetElement<char>(offset)};
        const char *from{
            this->from_->template OffsetElement<const char>(offset)};
        std::size_t toElementStride{this->instance_.ElementBytes()};
        std::size_t fromElementStride{
            this->from_->rank() == 0 ? 0 : this->from_->ElementBytes()};
        if (toElementStride == fromElementStride &&
            toElementStride == componentByteSize) {
          memmoveFct_(to, from, this->elements_ * componentByteSize);
        } else {
          for (std::size_t n{this->elements_}; n--;
              to += toElementStride, from += fromElementStride) {
            memmoveFct_(to, from, componentByteSize);
          }
        }
        this->SkipToNextComponent();
      } else {
        memmoveFct_(this->instance_.template Element<char>(this->subscripts_) +
                this->component_->offset(),
            this->from_->template Element<const char>(this->fromSubscripts_) +
                this->component_->offset(),
            componentByteSize);
        this->Advance();
      }
    } break;
    case typeInfo::Component::Genre::Allocatable:
    case typeInfo::Component::Genre::Automatic: {
      auto *toDesc{reinterpret_cast<Descriptor *>(
          this->instance_.template Element<char>(this->subscripts_) +
          this->component_->offset())};
      const auto *fromDesc{reinterpret_cast<const Descriptor *>(
          this->from_->template Element<char>(this->fromSubscripts_) +
          this->component_->offset())};
      const auto *componentDerived{this->component_->derivedType()};
      if (toDesc->IsAllocatable() && !fromDesc->IsAllocated()) {
        if (toDesc->IsAllocated()) {
          if (this->phase_ == 0) {
            if (componentDerived && !componentDerived->noDestructionNeeded()) {
              if (int status{workQueue.BeginDestroy(
                      *toDesc, *componentDerived, /*finalize=*/false)};
                  status != StatOk) {
                this->phase_++;
                return status;
              }
            }
          }
          toDesc->Deallocate();
        }
        this->Advance();
      } else {
        // Allocatable components of the LHS are unconditionally
        // deallocated before assignment (F'2018 10.2.1.3(13)(1)),
        // unlike a "top-level" assignment to a variable, where
        // deallocation is optional.
        int nestedFlags{flags_};
        if (!componentDerived ||
            (componentDerived->noFinalizationNeeded() &&
                componentDerived->noInitializationNeeded() &&
                componentDerived->noDestructionNeeded())) {
          // The actual deallocation might be avoidable when the existing
          // location can be reoccupied.
          nestedFlags |= MaybeReallocate | UpdateLHSBounds;
        } else {
          // Force LHS deallocation with DeallocateLHS flag.
          nestedFlags |= DeallocateLHS;
        }
        this->Advance();
        if (int status{workQueue.BeginAssign(*toDesc, *fromDesc, nestedFlags,
                memmoveFct_, componentDerived)};
            status != StatOk) {
          return status;
        }
      }
    } break;
    }
  }
  if (deallocateAfter_) {
    deallocateAfter_->Deallocate();
  }
  return StatOk;
}
template RT_API_ATTRS int DerivedAssignTicket<false>::Continue(WorkQueue &);
template RT_API_ATTRS int DerivedAssignTicket<true>::Continue(WorkQueue &);

RT_API_ATTRS void DoFromSourceAssign(Descriptor &alloc,
    const Descriptor &source, Terminator &terminator, MemmoveFct memmoveFct) {
  if (alloc.rank() > 0 && source.rank() == 0) {
    // The value of each element of allocate object becomes the value of source.
    DescriptorAddendum *allocAddendum{alloc.Addendum()};
    const typeInfo::DerivedType *allocDerived{
        allocAddendum ? allocAddendum->derivedType() : nullptr};
    SubscriptValue allocAt[maxRank];
    alloc.GetLowerBounds(allocAt);
    if (allocDerived) {
      for (std::size_t n{alloc.InlineElements()}; n-- > 0;
          alloc.IncrementSubscripts(allocAt)) {
        Descriptor allocElement{*Descriptor::Create(*allocDerived,
            reinterpret_cast<void *>(alloc.Element<char>(allocAt)), 0)};
        Assign(allocElement, source, terminator, NoAssignFlags, memmoveFct);
      }
    } else { // intrinsic type
      for (std::size_t n{alloc.InlineElements()}; n-- > 0;
          alloc.IncrementSubscripts(allocAt)) {
        memmoveFct(alloc.Element<char>(allocAt), source.raw().base_addr,
            alloc.ElementBytes());
      }
    }
  } else {
    Assign(alloc, source, terminator, NoAssignFlags, memmoveFct);
  }
}

RT_OFFLOAD_API_GROUP_END

extern "C" {
RT_EXT_API_GROUP_BEGIN

void RTDEF(Assign)(Descriptor &to, const Descriptor &from,
    const char *sourceFile, int sourceLine) {
  Terminator terminator{sourceFile, sourceLine};
  // All top-level defined assignments can be recognized in semantics and
  // will have been already been converted to calls, so don't check for
  // defined assignment apart from components.
  Assign(to, from, terminator,
      MaybeReallocate | NeedFinalization | ComponentCanBeDefinedAssignment);
}

void RTDEF(AssignTemporary)(Descriptor &to, const Descriptor &from,
    const char *sourceFile, int sourceLine) {
  Terminator terminator{sourceFile, sourceLine};
  // Initialize the "to" if it is of derived type that needs initialization.
  if (const DescriptorAddendum * addendum{to.Addendum()}) {
    if (const auto *derived{addendum->derivedType()}) {
      // Do not invoke the initialization, if the descriptor is unallocated.
      // AssignTemporary() is used for component-by-component assignments,
      // for example, for structure constructors. This means that the LHS
      // may be an allocatable component with unallocated status.
      // The initialization will just fail in this case. By skipping
      // the initialization we let Assign() automatically allocate
      // and initialize the component according to the RHS.
      // So we only need to initialize the LHS here if it is allocated.
      // Note that initializing already initialized entity has no visible
      // effect, though, it is assumed that the compiler does not initialize
      // the temporary and leaves the initialization to this runtime code.
      if (!derived->noInitializationNeeded() && to.IsAllocated()) {
        if (ReturnError(terminator, Initialize(to, *derived, terminator)) !=
            StatOk) {
          return;
        }
      }
    }
  }
  Assign(to, from, terminator, MaybeReallocate | PolymorphicLHS);
}

void RTDEF(CopyInAssign)(Descriptor &temp, const Descriptor &var,
    const char *sourceFile, int sourceLine) {
  Terminator terminator{sourceFile, sourceLine};
  temp = var;
  temp.set_base_addr(nullptr);
  temp.raw().attribute = CFI_attribute_allocatable;
  temp.Allocate(kNoAsyncObject);
  ShallowCopy(temp, var);
}

void RTDEF(CopyOutAssign)(
    Descriptor *var, Descriptor &temp, const char *sourceFile, int sourceLine) {
  Terminator terminator{sourceFile, sourceLine};
  // Copyout from the temporary must not cause any finalizations
  // for LHS. The variable must be properly initialized already.
  if (var) {
    ShallowCopy(*var, temp);
  }
  temp.Deallocate();
}

void RTDEF(AssignExplicitLengthCharacter)(Descriptor &to,
    const Descriptor &from, const char *sourceFile, int sourceLine) {
  Terminator terminator{sourceFile, sourceLine};
  Assign(to, from, terminator,
      MaybeReallocate | NeedFinalization | ComponentCanBeDefinedAssignment |
          ExplicitLengthCharacterLHS);
}

void RTDEF(AssignPolymorphic)(Descriptor &to, const Descriptor &from,
    const char *sourceFile, int sourceLine) {
  Terminator terminator{sourceFile, sourceLine};
  Assign(to, from, terminator,
      MaybeReallocate | NeedFinalization | ComponentCanBeDefinedAssignment |
          PolymorphicLHS);
}

RT_EXT_API_GROUP_END
} // extern "C"
} // namespace Fortran::runtime