1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
|
//===-- clang-linker-wrapper/ClangLinkerWrapper.cpp - wrapper over linker-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
//
// This tool works as a wrapper over a linking job. This tool is used to create
// linked device images for offloading. It scans the linker's input for embedded
// device offloading data stored in sections `.llvm.offloading` and extracts it
// as a temporary file. The extracted device files will then be passed to a
// device linking job to create a final device image.
//
//===---------------------------------------------------------------------===//
#include "clang/Basic/Version.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/Frontend/Offloading/OffloadWrapper.h"
#include "llvm/Frontend/Offloading/Utility.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Module.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/LTO/LTO.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ArchiveWriter.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/OffloadBinary.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/TargetParser/Host.h"
#include <atomic>
#include <optional>
using namespace llvm;
using namespace llvm::opt;
using namespace llvm::object;
/// Path of the current binary.
static const char *LinkerExecutable;
/// Ssave intermediary results.
static bool SaveTemps = false;
/// Print arguments without executing.
static bool DryRun = false;
/// Print verbose output.
static bool Verbose = false;
/// Filename of the executable being created.
static StringRef ExecutableName;
/// Binary path for the CUDA installation.
static std::string CudaBinaryPath;
/// Mutex lock to protect writes to shared TempFiles in parallel.
static std::mutex TempFilesMutex;
/// Temporary files created by the linker wrapper.
static std::list<SmallString<128>> TempFiles;
/// Codegen flags for LTO backend.
static codegen::RegisterCodeGenFlags CodeGenFlags;
/// Global flag to indicate that the LTO pipeline threw an error.
static std::atomic<bool> LTOError;
using OffloadingImage = OffloadBinary::OffloadingImage;
namespace llvm {
// Provide DenseMapInfo so that OffloadKind can be used in a DenseMap.
template <> struct DenseMapInfo<OffloadKind> {
static inline OffloadKind getEmptyKey() { return OFK_LAST; }
static inline OffloadKind getTombstoneKey() {
return static_cast<OffloadKind>(OFK_LAST + 1);
}
static unsigned getHashValue(const OffloadKind &Val) { return Val; }
static bool isEqual(const OffloadKind &LHS, const OffloadKind &RHS) {
return LHS == RHS;
}
};
} // namespace llvm
namespace {
using std::error_code;
/// Must not overlap with llvm::opt::DriverFlag.
enum WrapperFlags {
WrapperOnlyOption = (1 << 4), // Options only used by the linker wrapper.
DeviceOnlyOption = (1 << 5), // Options only used for device linking.
};
enum ID {
OPT_INVALID = 0, // This is not an option ID.
#define OPTION(...) LLVM_MAKE_OPT_ID(__VA_ARGS__),
#include "LinkerWrapperOpts.inc"
LastOption
#undef OPTION
};
#define PREFIX(NAME, VALUE) \
static constexpr StringLiteral NAME##_init[] = VALUE; \
static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
std::size(NAME##_init) - 1);
#include "LinkerWrapperOpts.inc"
#undef PREFIX
static constexpr OptTable::Info InfoTable[] = {
#define OPTION(...) LLVM_CONSTRUCT_OPT_INFO(__VA_ARGS__),
#include "LinkerWrapperOpts.inc"
#undef OPTION
};
class WrapperOptTable : public opt::GenericOptTable {
public:
WrapperOptTable() : opt::GenericOptTable(InfoTable) {}
};
const OptTable &getOptTable() {
static const WrapperOptTable *Table = []() {
auto Result = std::make_unique<WrapperOptTable>();
return Result.release();
}();
return *Table;
}
void printCommands(ArrayRef<StringRef> CmdArgs) {
if (CmdArgs.empty())
return;
llvm::errs() << " \"" << CmdArgs.front() << "\" ";
for (auto IC = std::next(CmdArgs.begin()), IE = CmdArgs.end(); IC != IE; ++IC)
llvm::errs() << *IC << (std::next(IC) != IE ? " " : "\n");
}
[[noreturn]] void reportError(Error E) {
outs().flush();
logAllUnhandledErrors(std::move(E),
WithColor::error(errs(), LinkerExecutable));
exit(EXIT_FAILURE);
}
/// Create an extra user-specified \p OffloadFile.
/// TODO: We should find a way to wrap these as libraries instead.
Expected<OffloadFile> getInputBitcodeLibrary(StringRef Input) {
auto [Device, Path] = StringRef(Input).split('=');
auto [String, Arch] = Device.rsplit('-');
auto [Kind, Triple] = String.split('-');
llvm::ErrorOr<std::unique_ptr<MemoryBuffer>> ImageOrError =
llvm::MemoryBuffer::getFileOrSTDIN(Path);
if (std::error_code EC = ImageOrError.getError())
return createFileError(Path, EC);
OffloadingImage Image{};
Image.TheImageKind = IMG_Bitcode;
Image.TheOffloadKind = getOffloadKind(Kind);
Image.StringData["triple"] = Triple;
Image.StringData["arch"] = Arch;
Image.Image = std::move(*ImageOrError);
std::unique_ptr<MemoryBuffer> Binary =
MemoryBuffer::getMemBufferCopy(OffloadBinary::write(Image));
auto NewBinaryOrErr = OffloadBinary::create(*Binary);
if (!NewBinaryOrErr)
return NewBinaryOrErr.takeError();
return OffloadFile(std::move(*NewBinaryOrErr), std::move(Binary));
}
std::string getMainExecutable(const char *Name) {
void *Ptr = (void *)(intptr_t)&getMainExecutable;
auto COWPath = sys::fs::getMainExecutable(Name, Ptr);
return sys::path::parent_path(COWPath).str();
}
/// Get a temporary filename suitable for output.
Expected<StringRef> createOutputFile(const Twine &Prefix, StringRef Extension) {
std::scoped_lock<decltype(TempFilesMutex)> Lock(TempFilesMutex);
SmallString<128> OutputFile;
if (SaveTemps) {
(Prefix + "." + Extension).toNullTerminatedStringRef(OutputFile);
} else {
if (std::error_code EC =
sys::fs::createTemporaryFile(Prefix, Extension, OutputFile))
return createFileError(OutputFile, EC);
}
TempFiles.emplace_back(std::move(OutputFile));
return TempFiles.back();
}
/// Execute the command \p ExecutablePath with the arguments \p Args.
Error executeCommands(StringRef ExecutablePath, ArrayRef<StringRef> Args) {
if (Verbose || DryRun)
printCommands(Args);
if (!DryRun)
if (sys::ExecuteAndWait(ExecutablePath, Args))
return createStringError(inconvertibleErrorCode(),
"'" + sys::path::filename(ExecutablePath) + "'" +
" failed");
return Error::success();
}
Expected<std::string> findProgram(StringRef Name, ArrayRef<StringRef> Paths) {
ErrorOr<std::string> Path = sys::findProgramByName(Name, Paths);
if (!Path)
Path = sys::findProgramByName(Name);
if (!Path && DryRun)
return Name.str();
if (!Path)
return createStringError(Path.getError(),
"Unable to find '" + Name + "' in path");
return *Path;
}
/// Returns the hashed value for a constant string.
std::string getHash(StringRef Str) {
llvm::MD5 Hasher;
llvm::MD5::MD5Result Hash;
Hasher.update(Str);
Hasher.final(Hash);
return llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
}
/// Renames offloading entry sections in a relocatable link so they do not
/// conflict with a later link job.
Error relocateOffloadSection(const ArgList &Args, StringRef Output) {
llvm::Triple Triple(
Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple()));
if (Triple.isOSWindows())
return createStringError(
inconvertibleErrorCode(),
"Relocatable linking is not supported on COFF targets");
Expected<std::string> ObjcopyPath =
findProgram("llvm-objcopy", {getMainExecutable("llvm-objcopy")});
if (!ObjcopyPath)
return ObjcopyPath.takeError();
// Use the linker output file to get a unique hash. This creates a unique
// identifier to rename the sections to that is deterministic to the contents.
auto BufferOrErr = DryRun ? MemoryBuffer::getMemBuffer("")
: MemoryBuffer::getFileOrSTDIN(Output);
if (!BufferOrErr)
return createStringError(inconvertibleErrorCode(), "Failed to open %s",
Output.str().c_str());
std::string Suffix = "_" + getHash((*BufferOrErr)->getBuffer());
SmallVector<StringRef> ObjcopyArgs = {
*ObjcopyPath,
Output,
};
// Remove the old .llvm.offloading section to prevent further linking.
ObjcopyArgs.emplace_back("--remove-section");
ObjcopyArgs.emplace_back(".llvm.offloading");
for (StringRef Prefix : {"omp", "cuda", "hip"}) {
auto Section = (Prefix + "_offloading_entries").str();
// Rename the offloading entires to make them private to this link unit.
ObjcopyArgs.emplace_back("--rename-section");
ObjcopyArgs.emplace_back(
Args.MakeArgString(Section + "=" + Section + Suffix));
// Rename the __start_ / __stop_ symbols appropriately to iterate over the
// newly renamed section containing the offloading entries.
ObjcopyArgs.emplace_back("--redefine-sym");
ObjcopyArgs.emplace_back(Args.MakeArgString("__start_" + Section + "=" +
"__start_" + Section + Suffix));
ObjcopyArgs.emplace_back("--redefine-sym");
ObjcopyArgs.emplace_back(Args.MakeArgString("__stop_" + Section + "=" +
"__stop_" + Section + Suffix));
}
if (Error Err = executeCommands(*ObjcopyPath, ObjcopyArgs))
return Err;
return Error::success();
}
/// Runs the wrapped linker job with the newly created input.
Error runLinker(ArrayRef<StringRef> Files, const ArgList &Args) {
llvm::TimeTraceScope TimeScope("Execute host linker");
// Render the linker arguments and add the newly created image. We add it
// after the output file to ensure it is linked with the correct libraries.
StringRef LinkerPath = Args.getLastArgValue(OPT_linker_path_EQ);
ArgStringList NewLinkerArgs;
for (const opt::Arg *Arg : Args) {
// Do not forward arguments only intended for the linker wrapper.
if (Arg->getOption().hasFlag(WrapperOnlyOption))
continue;
Arg->render(Args, NewLinkerArgs);
if (Arg->getOption().matches(OPT_o) || Arg->getOption().matches(OPT_out))
llvm::transform(Files, std::back_inserter(NewLinkerArgs),
[&](StringRef Arg) { return Args.MakeArgString(Arg); });
}
SmallVector<StringRef> LinkerArgs({LinkerPath});
for (StringRef Arg : NewLinkerArgs)
LinkerArgs.push_back(Arg);
if (Error Err = executeCommands(LinkerPath, LinkerArgs))
return Err;
if (Args.hasArg(OPT_relocatable))
return relocateOffloadSection(Args, ExecutableName);
return Error::success();
}
void printVersion(raw_ostream &OS) {
OS << clang::getClangToolFullVersion("clang-linker-wrapper") << '\n';
}
namespace nvptx {
Expected<StringRef>
fatbinary(ArrayRef<std::pair<StringRef, StringRef>> InputFiles,
const ArgList &Args) {
llvm::TimeTraceScope TimeScope("NVPTX fatbinary");
// NVPTX uses the fatbinary program to bundle the linked images.
Expected<std::string> FatBinaryPath =
findProgram("fatbinary", {CudaBinaryPath + "/bin"});
if (!FatBinaryPath)
return FatBinaryPath.takeError();
llvm::Triple Triple(
Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple()));
// Create a new file to write the linked device image to.
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName), "fatbin");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
SmallVector<StringRef, 16> CmdArgs;
CmdArgs.push_back(*FatBinaryPath);
CmdArgs.push_back(Triple.isArch64Bit() ? "-64" : "-32");
CmdArgs.push_back("--create");
CmdArgs.push_back(*TempFileOrErr);
for (const auto &[File, Arch] : InputFiles)
CmdArgs.push_back(
Args.MakeArgString("--image=profile=" + Arch + ",file=" + File));
if (Error Err = executeCommands(*FatBinaryPath, CmdArgs))
return std::move(Err);
return *TempFileOrErr;
}
} // namespace nvptx
namespace amdgcn {
Expected<StringRef>
fatbinary(ArrayRef<std::pair<StringRef, StringRef>> InputFiles,
const ArgList &Args) {
llvm::TimeTraceScope TimeScope("AMDGPU Fatbinary");
// AMDGPU uses the clang-offload-bundler to bundle the linked images.
Expected<std::string> OffloadBundlerPath = findProgram(
"clang-offload-bundler", {getMainExecutable("clang-offload-bundler")});
if (!OffloadBundlerPath)
return OffloadBundlerPath.takeError();
llvm::Triple Triple(
Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple()));
// Create a new file to write the linked device image to.
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName), "hipfb");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
SmallVector<StringRef, 16> CmdArgs;
CmdArgs.push_back(*OffloadBundlerPath);
CmdArgs.push_back("-type=o");
CmdArgs.push_back("-bundle-align=4096");
if (Args.hasArg(OPT_compress))
CmdArgs.push_back("-compress");
if (auto *Arg = Args.getLastArg(OPT_compression_level_eq))
CmdArgs.push_back(
Args.MakeArgString(Twine("-compression-level=") + Arg->getValue()));
SmallVector<StringRef> Targets = {"-targets=host-x86_64-unknown-linux"};
for (const auto &[File, Arch] : InputFiles)
Targets.push_back(Saver.save("hip-amdgcn-amd-amdhsa--" + Arch));
CmdArgs.push_back(Saver.save(llvm::join(Targets, ",")));
#ifdef _WIN32
CmdArgs.push_back("-input=NUL");
#else
CmdArgs.push_back("-input=/dev/null");
#endif
for (const auto &[File, Arch] : InputFiles)
CmdArgs.push_back(Saver.save("-input=" + File));
CmdArgs.push_back(Saver.save("-output=" + *TempFileOrErr));
if (Error Err = executeCommands(*OffloadBundlerPath, CmdArgs))
return std::move(Err);
return *TempFileOrErr;
}
} // namespace amdgcn
namespace generic {
Expected<StringRef> clang(ArrayRef<StringRef> InputFiles, const ArgList &Args) {
llvm::TimeTraceScope TimeScope("Clang");
// Use `clang` to invoke the appropriate device tools.
Expected<std::string> ClangPath =
findProgram("clang", {getMainExecutable("clang")});
if (!ClangPath)
return ClangPath.takeError();
const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ));
StringRef Arch = Args.getLastArgValue(OPT_arch_EQ);
if (Arch.empty())
Arch = "native";
// Create a new file to write the linked device image to. Assume that the
// input filename already has the device and architecture.
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName) + "." +
Triple.getArchName() + "." + Arch,
"img");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
StringRef OptLevel = Args.getLastArgValue(OPT_opt_level, "O2");
SmallVector<StringRef, 16> CmdArgs{
*ClangPath,
"--no-default-config",
"-o",
*TempFileOrErr,
Args.MakeArgString("--target=" + Triple.getTriple()),
Triple.isAMDGPU() ? Args.MakeArgString("-mcpu=" + Arch)
: Args.MakeArgString("-march=" + Arch),
Args.MakeArgString("-" + OptLevel),
};
if (!Triple.isNVPTX())
CmdArgs.push_back("-Wl,--no-undefined");
for (StringRef InputFile : InputFiles)
CmdArgs.push_back(InputFile);
// If this is CPU offloading we copy the input libraries.
if (!Triple.isAMDGPU() && !Triple.isNVPTX()) {
CmdArgs.push_back("-Wl,-Bsymbolic");
CmdArgs.push_back("-shared");
ArgStringList LinkerArgs;
for (const opt::Arg *Arg :
Args.filtered(OPT_INPUT, OPT_library, OPT_library_path, OPT_rpath,
OPT_whole_archive, OPT_no_whole_archive)) {
// Sometimes needed libraries are passed by name, such as when using
// sanitizers. We need to check the file magic for any libraries.
if (Arg->getOption().matches(OPT_INPUT)) {
if (!sys::fs::exists(Arg->getValue()) ||
sys::fs::is_directory(Arg->getValue()))
continue;
file_magic Magic;
if (auto EC = identify_magic(Arg->getValue(), Magic))
return createStringError(inconvertibleErrorCode(),
"Failed to open %s", Arg->getValue());
if (Magic != file_magic::archive &&
Magic != file_magic::elf_shared_object)
continue;
}
if (Arg->getOption().matches(OPT_whole_archive))
LinkerArgs.push_back(Args.MakeArgString("-Wl,--whole-archive"));
else if (Arg->getOption().matches(OPT_no_whole_archive))
LinkerArgs.push_back(Args.MakeArgString("-Wl,--no-whole-archive"));
else
Arg->render(Args, LinkerArgs);
}
llvm::copy(LinkerArgs, std::back_inserter(CmdArgs));
}
// Pass on -mllvm options to the clang invocation.
for (const opt::Arg *Arg : Args.filtered(OPT_mllvm)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Arg->getValue());
}
if (Args.hasArg(OPT_debug))
CmdArgs.push_back("-g");
if (SaveTemps)
CmdArgs.push_back("-save-temps");
if (Verbose)
CmdArgs.push_back("-v");
if (!CudaBinaryPath.empty())
CmdArgs.push_back(Args.MakeArgString("--cuda-path=" + CudaBinaryPath));
for (StringRef Arg : Args.getAllArgValues(OPT_ptxas_arg))
llvm::copy(
SmallVector<StringRef>({"-Xcuda-ptxas", Args.MakeArgString(Arg)}),
std::back_inserter(CmdArgs));
for (StringRef Arg : Args.getAllArgValues(OPT_linker_arg_EQ))
CmdArgs.push_back(Args.MakeArgString(Arg));
for (StringRef Arg : Args.getAllArgValues(OPT_builtin_bitcode_EQ)) {
if (llvm::Triple(Arg.split('=').first) == Triple)
CmdArgs.append({"-Xclang", "-mlink-builtin-bitcode", "-Xclang",
Args.MakeArgString(Arg.split('=').second)});
}
// The OpenMPOpt pass can introduce new calls and is expensive, we do not want
// this when running CodeGen through clang.
if (Args.hasArg(OPT_clang_backend) || Args.hasArg(OPT_builtin_bitcode_EQ))
CmdArgs.append({"-mllvm", "-openmp-opt-disable"});
if (Error Err = executeCommands(*ClangPath, CmdArgs))
return std::move(Err);
return *TempFileOrErr;
}
} // namespace generic
Expected<StringRef> linkDevice(ArrayRef<StringRef> InputFiles,
const ArgList &Args) {
const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ));
switch (Triple.getArch()) {
case Triple::nvptx:
case Triple::nvptx64:
case Triple::amdgcn:
case Triple::x86:
case Triple::x86_64:
case Triple::aarch64:
case Triple::aarch64_be:
case Triple::ppc64:
case Triple::ppc64le:
case Triple::systemz:
return generic::clang(InputFiles, Args);
default:
return createStringError(inconvertibleErrorCode(),
Triple.getArchName() +
" linking is not supported");
}
}
void diagnosticHandler(const DiagnosticInfo &DI) {
std::string ErrStorage;
raw_string_ostream OS(ErrStorage);
DiagnosticPrinterRawOStream DP(OS);
DI.print(DP);
switch (DI.getSeverity()) {
case DS_Error:
WithColor::error(errs(), LinkerExecutable) << ErrStorage << "\n";
LTOError = true;
break;
case DS_Warning:
WithColor::warning(errs(), LinkerExecutable) << ErrStorage << "\n";
break;
case DS_Note:
WithColor::note(errs(), LinkerExecutable) << ErrStorage << "\n";
break;
case DS_Remark:
WithColor::remark(errs()) << ErrStorage << "\n";
break;
}
}
// Get the list of target features from the input file and unify them such that
// if there are multiple +xxx or -xxx features we only keep the last one.
std::vector<std::string> getTargetFeatures(ArrayRef<OffloadFile> InputFiles) {
SmallVector<StringRef> Features;
for (const OffloadFile &File : InputFiles) {
for (auto Arg : llvm::split(File.getBinary()->getString("feature"), ","))
Features.emplace_back(Arg);
}
// Only add a feature if it hasn't been seen before starting from the end.
std::vector<std::string> UnifiedFeatures;
DenseSet<StringRef> UsedFeatures;
for (StringRef Feature : llvm::reverse(Features)) {
if (UsedFeatures.insert(Feature.drop_front()).second)
UnifiedFeatures.push_back(Feature.str());
}
return UnifiedFeatures;
}
template <typename ModuleHook = function_ref<bool(size_t, const Module &)>>
std::unique_ptr<lto::LTO> createLTO(
const ArgList &Args, const std::vector<std::string> &Features,
ModuleHook Hook = [](size_t, const Module &) { return true; }) {
const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ));
// We need to remove AMD's target-id from the processor if present.
StringRef Arch = Args.getLastArgValue(OPT_arch_EQ).split(":").first;
lto::Config Conf;
lto::ThinBackend Backend;
// TODO: Handle index-only thin-LTO
Backend =
lto::createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
Conf.CPU = Arch.str();
Conf.Options = codegen::InitTargetOptionsFromCodeGenFlags(Triple);
StringRef OptLevel = Args.getLastArgValue(OPT_opt_level, "O2");
Conf.MAttrs = Features;
std::optional<CodeGenOptLevel> CGOptLevelOrNone =
CodeGenOpt::parseLevel(OptLevel[1]);
assert(CGOptLevelOrNone && "Invalid optimization level");
Conf.CGOptLevel = *CGOptLevelOrNone;
Conf.OptLevel = OptLevel[1] - '0';
Conf.DefaultTriple = Triple.getTriple();
LTOError = false;
Conf.DiagHandler = diagnosticHandler;
Conf.PTO.LoopVectorization = Conf.OptLevel > 1;
Conf.PTO.SLPVectorization = Conf.OptLevel > 1;
if (SaveTemps) {
std::string TempName = (sys::path::filename(ExecutableName) + "." +
Triple.getTriple() + "." + Arch)
.str();
Conf.PostInternalizeModuleHook = [=](size_t Task, const Module &M) {
std::string File =
!Task ? TempName + ".postlink.bc"
: TempName + "." + std::to_string(Task) + ".postlink.bc";
error_code EC;
raw_fd_ostream LinkedBitcode(File, EC, sys::fs::OF_None);
if (EC)
reportError(errorCodeToError(EC));
WriteBitcodeToFile(M, LinkedBitcode);
return true;
};
Conf.PreCodeGenModuleHook = [=](size_t Task, const Module &M) {
std::string File =
!Task ? TempName + ".postopt.bc"
: TempName + "." + std::to_string(Task) + ".postopt.bc";
error_code EC;
raw_fd_ostream LinkedBitcode(File, EC, sys::fs::OF_None);
if (EC)
reportError(errorCodeToError(EC));
WriteBitcodeToFile(M, LinkedBitcode);
return true;
};
}
Conf.PostOptModuleHook = Hook;
Conf.CGFileType = (Triple.isNVPTX() || SaveTemps)
? CodeGenFileType::AssemblyFile
: CodeGenFileType::ObjectFile;
// TODO: Handle remark files
Conf.HasWholeProgramVisibility = Args.hasArg(OPT_whole_program);
return std::make_unique<lto::LTO>(std::move(Conf), Backend);
}
// Returns true if \p S is valid as a C language identifier and will be given
// `__start_` and `__stop_` symbols.
bool isValidCIdentifier(StringRef S) {
return !S.empty() && (isAlpha(S[0]) || S[0] == '_') &&
llvm::all_of(llvm::drop_begin(S),
[](char C) { return C == '_' || isAlnum(C); });
}
Error linkBitcodeFiles(SmallVectorImpl<OffloadFile> &InputFiles,
SmallVectorImpl<StringRef> &OutputFiles,
const ArgList &Args) {
llvm::TimeTraceScope TimeScope("Link bitcode files");
const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ));
StringRef Arch = Args.getLastArgValue(OPT_arch_EQ);
SmallVector<OffloadFile, 4> BitcodeInputFiles;
DenseSet<StringRef> StrongResolutions;
DenseSet<StringRef> UsedInRegularObj;
DenseSet<StringRef> UsedInSharedLib;
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
// Search for bitcode files in the input and create an LTO input file. If it
// is not a bitcode file, scan its symbol table for symbols we need to save.
for (OffloadFile &File : InputFiles) {
MemoryBufferRef Buffer = MemoryBufferRef(File.getBinary()->getImage(), "");
file_magic Type = identify_magic(Buffer.getBuffer());
switch (Type) {
case file_magic::bitcode: {
Expected<IRSymtabFile> IRSymtabOrErr = readIRSymtab(Buffer);
if (!IRSymtabOrErr)
return IRSymtabOrErr.takeError();
// Check for any strong resolutions we need to preserve.
for (unsigned I = 0; I != IRSymtabOrErr->Mods.size(); ++I) {
for (const auto &Sym : IRSymtabOrErr->TheReader.module_symbols(I)) {
if (!Sym.isFormatSpecific() && Sym.isGlobal() && !Sym.isWeak() &&
!Sym.isUndefined())
StrongResolutions.insert(Saver.save(Sym.Name));
}
}
BitcodeInputFiles.emplace_back(std::move(File));
continue;
}
case file_magic::elf_relocatable:
case file_magic::elf_shared_object: {
Expected<std::unique_ptr<ObjectFile>> ObjFile =
ObjectFile::createObjectFile(Buffer);
if (!ObjFile)
continue;
for (SymbolRef Sym : (*ObjFile)->symbols()) {
Expected<StringRef> Name = Sym.getName();
if (!Name)
return Name.takeError();
// Record if we've seen these symbols in any object or shared libraries.
if ((*ObjFile)->isRelocatableObject())
UsedInRegularObj.insert(Saver.save(*Name));
else
UsedInSharedLib.insert(Saver.save(*Name));
}
continue;
}
default:
continue;
}
}
if (BitcodeInputFiles.empty())
return Error::success();
// Remove all the bitcode files that we moved from the original input.
llvm::erase_if(InputFiles, [](OffloadFile &F) { return !F.getBinary(); });
// LTO Module hook to output bitcode without running the backend.
SmallVector<StringRef> BitcodeOutput;
auto OutputBitcode = [&](size_t, const Module &M) {
auto TempFileOrErr = createOutputFile(sys::path::filename(ExecutableName) +
"-jit-" + Triple.getTriple(),
"bc");
if (!TempFileOrErr)
reportError(TempFileOrErr.takeError());
std::error_code EC;
raw_fd_ostream LinkedBitcode(*TempFileOrErr, EC, sys::fs::OF_None);
if (EC)
reportError(errorCodeToError(EC));
WriteBitcodeToFile(M, LinkedBitcode);
BitcodeOutput.push_back(*TempFileOrErr);
return false;
};
// We assume visibility of the whole program if every input file was bitcode.
auto Features = getTargetFeatures(BitcodeInputFiles);
auto LTOBackend = Args.hasArg(OPT_embed_bitcode) ||
Args.hasArg(OPT_builtin_bitcode_EQ) ||
Args.hasArg(OPT_clang_backend)
? createLTO(Args, Features, OutputBitcode)
: createLTO(Args, Features);
// We need to resolve the symbols so the LTO backend knows which symbols need
// to be kept or can be internalized. This is a simplified symbol resolution
// scheme to approximate the full resolution a linker would do.
uint64_t Idx = 0;
DenseSet<StringRef> PrevailingSymbols;
for (auto &BitcodeInput : BitcodeInputFiles) {
// Get a semi-unique buffer identifier for Thin-LTO.
StringRef Identifier = Saver.save(
std::to_string(Idx++) + "." +
BitcodeInput.getBinary()->getMemoryBufferRef().getBufferIdentifier());
MemoryBufferRef Buffer =
MemoryBufferRef(BitcodeInput.getBinary()->getImage(), Identifier);
Expected<std::unique_ptr<lto::InputFile>> BitcodeFileOrErr =
llvm::lto::InputFile::create(Buffer);
if (!BitcodeFileOrErr)
return BitcodeFileOrErr.takeError();
// Save the input file and the buffer associated with its memory.
const auto Symbols = (*BitcodeFileOrErr)->symbols();
SmallVector<lto::SymbolResolution, 16> Resolutions(Symbols.size());
size_t Idx = 0;
for (auto &Sym : Symbols) {
lto::SymbolResolution &Res = Resolutions[Idx++];
// We will use this as the prevailing symbol definition in LTO unless
// it is undefined or another definition has already been used.
Res.Prevailing =
!Sym.isUndefined() &&
!(Sym.isWeak() && StrongResolutions.contains(Sym.getName())) &&
PrevailingSymbols.insert(Saver.save(Sym.getName())).second;
// We need LTO to preseve the following global symbols:
// 1) Symbols used in regular objects.
// 2) Sections that will be given a __start/__stop symbol.
// 3) Prevailing symbols that are needed visible to external libraries.
Res.VisibleToRegularObj =
UsedInRegularObj.contains(Sym.getName()) ||
isValidCIdentifier(Sym.getSectionName()) ||
(Res.Prevailing &&
(Sym.getVisibility() != GlobalValue::HiddenVisibility &&
!Sym.canBeOmittedFromSymbolTable()));
// Identify symbols that must be exported dynamically and can be
// referenced by other files.
Res.ExportDynamic =
Sym.getVisibility() != GlobalValue::HiddenVisibility &&
(UsedInSharedLib.contains(Sym.getName()) ||
!Sym.canBeOmittedFromSymbolTable());
// The final definition will reside in this linkage unit if the symbol is
// defined and local to the module. This only checks for bitcode files,
// full assertion will require complete symbol resolution.
Res.FinalDefinitionInLinkageUnit =
Sym.getVisibility() != GlobalValue::DefaultVisibility &&
(!Sym.isUndefined() && !Sym.isCommon());
// We do not support linker redefined symbols (e.g. --wrap) for device
// image linking, so the symbols will not be changed after LTO.
Res.LinkerRedefined = false;
}
// Add the bitcode file with its resolved symbols to the LTO job.
if (Error Err = LTOBackend->add(std::move(*BitcodeFileOrErr), Resolutions))
return Err;
}
// Run the LTO job to compile the bitcode.
size_t MaxTasks = LTOBackend->getMaxTasks();
SmallVector<StringRef> Files(MaxTasks);
auto AddStream =
[&](size_t Task,
const Twine &ModuleName) -> std::unique_ptr<CachedFileStream> {
int FD = -1;
auto &TempFile = Files[Task];
StringRef Extension = (Triple.isNVPTX() || SaveTemps) ? "s" : "o";
std::string TaskStr = Task ? "." + std::to_string(Task) : "";
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName) + "." +
Triple.getTriple() + "." + Arch + TaskStr,
Extension);
if (!TempFileOrErr)
reportError(TempFileOrErr.takeError());
TempFile = *TempFileOrErr;
if (std::error_code EC = sys::fs::openFileForWrite(TempFile, FD))
reportError(errorCodeToError(EC));
return std::make_unique<CachedFileStream>(
std::make_unique<llvm::raw_fd_ostream>(FD, true));
};
if (Error Err = LTOBackend->run(AddStream))
return Err;
if (LTOError)
return createStringError(inconvertibleErrorCode(),
"Errors encountered inside the LTO pipeline.");
// If we are embedding bitcode we only need the intermediate output.
bool SingleOutput = Files.size() == 1;
if (Args.hasArg(OPT_embed_bitcode)) {
if (BitcodeOutput.size() != 1 || !SingleOutput)
return createStringError(inconvertibleErrorCode(),
"Cannot embed bitcode with multiple files.");
OutputFiles.push_back(Args.MakeArgString(BitcodeOutput.front()));
return Error::success();
}
// Append the new inputs to the device linker input. If the user requested an
// internalizing link we need to pass the bitcode to clang.
for (StringRef File :
Args.hasArg(OPT_clang_backend) || Args.hasArg(OPT_builtin_bitcode_EQ)
? BitcodeOutput
: Files)
OutputFiles.push_back(File);
return Error::success();
}
Expected<StringRef> writeOffloadFile(const OffloadFile &File) {
const OffloadBinary &Binary = *File.getBinary();
StringRef Prefix =
sys::path::stem(Binary.getMemoryBufferRef().getBufferIdentifier());
StringRef Suffix = getImageKindName(Binary.getImageKind());
auto TempFileOrErr = createOutputFile(
Prefix + "-" + Binary.getTriple() + "-" + Binary.getArch(), Suffix);
if (!TempFileOrErr)
return TempFileOrErr.takeError();
Expected<std::unique_ptr<FileOutputBuffer>> OutputOrErr =
FileOutputBuffer::create(*TempFileOrErr, Binary.getImage().size());
if (!OutputOrErr)
return OutputOrErr.takeError();
std::unique_ptr<FileOutputBuffer> Output = std::move(*OutputOrErr);
llvm::copy(Binary.getImage(), Output->getBufferStart());
if (Error E = Output->commit())
return std::move(E);
return *TempFileOrErr;
}
// Compile the module to an object file using the appropriate target machine for
// the host triple.
Expected<StringRef> compileModule(Module &M, OffloadKind Kind) {
llvm::TimeTraceScope TimeScope("Compile module");
std::string Msg;
const Target *T = TargetRegistry::lookupTarget(M.getTargetTriple(), Msg);
if (!T)
return createStringError(inconvertibleErrorCode(), Msg);
auto Options =
codegen::InitTargetOptionsFromCodeGenFlags(Triple(M.getTargetTriple()));
StringRef CPU = "";
StringRef Features = "";
std::unique_ptr<TargetMachine> TM(
T->createTargetMachine(M.getTargetTriple(), CPU, Features, Options,
Reloc::PIC_, M.getCodeModel()));
if (M.getDataLayout().isDefault())
M.setDataLayout(TM->createDataLayout());
int FD = -1;
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName) + "." +
getOffloadKindName(Kind) + ".image.wrapper",
"o");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
if (std::error_code EC = sys::fs::openFileForWrite(*TempFileOrErr, FD))
return errorCodeToError(EC);
auto OS = std::make_unique<llvm::raw_fd_ostream>(FD, true);
legacy::PassManager CodeGenPasses;
TargetLibraryInfoImpl TLII(Triple(M.getTargetTriple()));
CodeGenPasses.add(new TargetLibraryInfoWrapperPass(TLII));
if (TM->addPassesToEmitFile(CodeGenPasses, *OS, nullptr,
CodeGenFileType::ObjectFile))
return createStringError(inconvertibleErrorCode(),
"Failed to execute host backend");
CodeGenPasses.run(M);
return *TempFileOrErr;
}
/// Creates the object file containing the device image and runtime
/// registration code from the device images stored in \p Images.
Expected<StringRef>
wrapDeviceImages(ArrayRef<std::unique_ptr<MemoryBuffer>> Buffers,
const ArgList &Args, OffloadKind Kind) {
llvm::TimeTraceScope TimeScope("Wrap bundled images");
SmallVector<ArrayRef<char>, 4> BuffersToWrap;
for (const auto &Buffer : Buffers)
BuffersToWrap.emplace_back(
ArrayRef<char>(Buffer->getBufferStart(), Buffer->getBufferSize()));
LLVMContext Context;
Module M("offload.wrapper.module", Context);
M.setTargetTriple(
Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple()));
switch (Kind) {
case OFK_OpenMP:
if (Error Err = offloading::wrapOpenMPBinaries(
M, BuffersToWrap,
offloading::getOffloadEntryArray(M, "omp_offloading_entries"),
/*Suffix=*/"", /*Relocatable=*/Args.hasArg(OPT_relocatable)))
return std::move(Err);
break;
case OFK_Cuda:
if (Error Err = offloading::wrapCudaBinary(
M, BuffersToWrap.front(),
offloading::getOffloadEntryArray(M, "cuda_offloading_entries"),
/*Suffix=*/"", /*EmitSurfacesAndTextures=*/false))
return std::move(Err);
break;
case OFK_HIP:
if (Error Err = offloading::wrapHIPBinary(
M, BuffersToWrap.front(),
offloading::getOffloadEntryArray(M, "hip_offloading_entries")))
return std::move(Err);
break;
default:
return createStringError(inconvertibleErrorCode(),
getOffloadKindName(Kind) +
" wrapping is not supported");
}
if (Args.hasArg(OPT_print_wrapped_module))
errs() << M;
if (Args.hasArg(OPT_save_temps)) {
int FD = -1;
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName) + "." +
getOffloadKindName(Kind) + ".image.wrapper",
"bc");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
if (std::error_code EC = sys::fs::openFileForWrite(*TempFileOrErr, FD))
return errorCodeToError(EC);
llvm::raw_fd_ostream OS(FD, true);
WriteBitcodeToFile(M, OS);
}
auto FileOrErr = compileModule(M, Kind);
if (!FileOrErr)
return FileOrErr.takeError();
return *FileOrErr;
}
Expected<SmallVector<std::unique_ptr<MemoryBuffer>>>
bundleOpenMP(ArrayRef<OffloadingImage> Images) {
SmallVector<std::unique_ptr<MemoryBuffer>> Buffers;
for (const OffloadingImage &Image : Images)
Buffers.emplace_back(
MemoryBuffer::getMemBufferCopy(OffloadBinary::write(Image)));
return std::move(Buffers);
}
Expected<SmallVector<std::unique_ptr<MemoryBuffer>>>
bundleCuda(ArrayRef<OffloadingImage> Images, const ArgList &Args) {
SmallVector<std::pair<StringRef, StringRef>, 4> InputFiles;
for (const OffloadingImage &Image : Images)
InputFiles.emplace_back(std::make_pair(Image.Image->getBufferIdentifier(),
Image.StringData.lookup("arch")));
Triple TheTriple = Triple(Images.front().StringData.lookup("triple"));
auto FileOrErr = nvptx::fatbinary(InputFiles, Args);
if (!FileOrErr)
return FileOrErr.takeError();
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ImageOrError =
llvm::MemoryBuffer::getFileOrSTDIN(*FileOrErr);
SmallVector<std::unique_ptr<MemoryBuffer>> Buffers;
if (std::error_code EC = ImageOrError.getError())
return createFileError(*FileOrErr, EC);
Buffers.emplace_back(std::move(*ImageOrError));
return std::move(Buffers);
}
Expected<SmallVector<std::unique_ptr<MemoryBuffer>>>
bundleHIP(ArrayRef<OffloadingImage> Images, const ArgList &Args) {
SmallVector<std::pair<StringRef, StringRef>, 4> InputFiles;
for (const OffloadingImage &Image : Images)
InputFiles.emplace_back(std::make_pair(Image.Image->getBufferIdentifier(),
Image.StringData.lookup("arch")));
Triple TheTriple = Triple(Images.front().StringData.lookup("triple"));
auto FileOrErr = amdgcn::fatbinary(InputFiles, Args);
if (!FileOrErr)
return FileOrErr.takeError();
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ImageOrError =
llvm::MemoryBuffer::getFileOrSTDIN(*FileOrErr);
SmallVector<std::unique_ptr<MemoryBuffer>> Buffers;
if (std::error_code EC = ImageOrError.getError())
return createFileError(*FileOrErr, EC);
Buffers.emplace_back(std::move(*ImageOrError));
return std::move(Buffers);
}
/// Transforms the input \p Images into the binary format the runtime expects
/// for the given \p Kind.
Expected<SmallVector<std::unique_ptr<MemoryBuffer>>>
bundleLinkedOutput(ArrayRef<OffloadingImage> Images, const ArgList &Args,
OffloadKind Kind) {
llvm::TimeTraceScope TimeScope("Bundle linked output");
switch (Kind) {
case OFK_OpenMP:
return bundleOpenMP(Images);
case OFK_Cuda:
return bundleCuda(Images, Args);
case OFK_HIP:
return bundleHIP(Images, Args);
default:
return createStringError(inconvertibleErrorCode(),
getOffloadKindName(Kind) +
" bundling is not supported");
}
}
/// Returns a new ArgList containg arguments used for the device linking phase.
DerivedArgList getLinkerArgs(ArrayRef<OffloadFile> Input,
const InputArgList &Args) {
DerivedArgList DAL = DerivedArgList(DerivedArgList(Args));
for (Arg *A : Args)
DAL.append(A);
// Set the subarchitecture and target triple for this compilation.
const OptTable &Tbl = getOptTable();
DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_arch_EQ),
Args.MakeArgString(Input.front().getBinary()->getArch()));
DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_triple_EQ),
Args.MakeArgString(Input.front().getBinary()->getTriple()));
// If every input file is bitcode we have whole program visibility as we do
// only support static linking with bitcode.
auto ContainsBitcode = [](const OffloadFile &F) {
return identify_magic(F.getBinary()->getImage()) == file_magic::bitcode;
};
if (llvm::all_of(Input, ContainsBitcode))
DAL.AddFlagArg(nullptr, Tbl.getOption(OPT_whole_program));
// Forward '-Xoffload-linker' options to the appropriate backend.
for (StringRef Arg : Args.getAllArgValues(OPT_device_linker_args_EQ)) {
auto [Triple, Value] = Arg.split('=');
if (Value.empty())
DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_linker_arg_EQ),
Args.MakeArgString(Triple));
else if (Triple == DAL.getLastArgValue(OPT_triple_EQ))
DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_linker_arg_EQ),
Args.MakeArgString(Value));
}
return DAL;
}
Error handleOverrideImages(
const InputArgList &Args,
MapVector<OffloadKind, SmallVector<OffloadingImage, 0>> &Images) {
for (StringRef Arg : Args.getAllArgValues(OPT_override_image)) {
OffloadKind Kind = getOffloadKind(Arg.split("=").first);
StringRef Filename = Arg.split("=").second;
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = BufferOrErr.getError())
return createFileError(Filename, EC);
Expected<std::unique_ptr<ObjectFile>> ElfOrErr =
ObjectFile::createELFObjectFile(**BufferOrErr,
/*InitContent=*/false);
if (!ElfOrErr)
return ElfOrErr.takeError();
ObjectFile &Elf = **ElfOrErr;
OffloadingImage TheImage{};
TheImage.TheImageKind = IMG_Object;
TheImage.TheOffloadKind = Kind;
TheImage.StringData["triple"] =
Args.MakeArgString(Elf.makeTriple().getTriple());
if (std::optional<StringRef> CPU = Elf.tryGetCPUName())
TheImage.StringData["arch"] = Args.MakeArgString(*CPU);
TheImage.Image = std::move(*BufferOrErr);
Images[Kind].emplace_back(std::move(TheImage));
}
return Error::success();
}
/// Transforms all the extracted offloading input files into an image that can
/// be registered by the runtime.
Expected<SmallVector<StringRef>> linkAndWrapDeviceFiles(
SmallVectorImpl<SmallVector<OffloadFile>> &LinkerInputFiles,
const InputArgList &Args, char **Argv, int Argc) {
llvm::TimeTraceScope TimeScope("Handle all device input");
std::mutex ImageMtx;
MapVector<OffloadKind, SmallVector<OffloadingImage, 0>> Images;
// Initialize the images with any overriding inputs.
if (Args.hasArg(OPT_override_image))
if (Error Err = handleOverrideImages(Args, Images))
return std::move(Err);
auto Err = parallelForEachError(LinkerInputFiles, [&](auto &Input) -> Error {
llvm::TimeTraceScope TimeScope("Link device input");
// Each thread needs its own copy of the base arguments to maintain
// per-device argument storage of synthetic strings.
const OptTable &Tbl = getOptTable();
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
auto BaseArgs =
Tbl.parseArgs(Argc, Argv, OPT_INVALID, Saver, [](StringRef Err) {
reportError(createStringError(inconvertibleErrorCode(), Err));
});
auto LinkerArgs = getLinkerArgs(Input, BaseArgs);
DenseSet<OffloadKind> ActiveOffloadKinds;
for (const auto &File : Input)
if (File.getBinary()->getOffloadKind() != OFK_None)
ActiveOffloadKinds.insert(File.getBinary()->getOffloadKind());
// First link and remove all the input files containing bitcode.
SmallVector<StringRef> InputFiles;
if (Error Err = linkBitcodeFiles(Input, InputFiles, LinkerArgs))
return Err;
// Write any remaining device inputs to an output file for the linker.
for (const OffloadFile &File : Input) {
auto FileNameOrErr = writeOffloadFile(File);
if (!FileNameOrErr)
return FileNameOrErr.takeError();
InputFiles.emplace_back(*FileNameOrErr);
}
// Link the remaining device files using the device linker.
auto OutputOrErr = !Args.hasArg(OPT_embed_bitcode)
? linkDevice(InputFiles, LinkerArgs)
: InputFiles.front();
if (!OutputOrErr)
return OutputOrErr.takeError();
// Store the offloading image for each linked output file.
for (OffloadKind Kind : ActiveOffloadKinds) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(*OutputOrErr);
if (std::error_code EC = FileOrErr.getError()) {
if (DryRun)
FileOrErr = MemoryBuffer::getMemBuffer("");
else
return createFileError(*OutputOrErr, EC);
}
std::scoped_lock<decltype(ImageMtx)> Guard(ImageMtx);
OffloadingImage TheImage{};
TheImage.TheImageKind =
Args.hasArg(OPT_embed_bitcode) ? IMG_Bitcode : IMG_Object;
TheImage.TheOffloadKind = Kind;
TheImage.StringData["triple"] =
Args.MakeArgString(LinkerArgs.getLastArgValue(OPT_triple_EQ));
TheImage.StringData["arch"] =
Args.MakeArgString(LinkerArgs.getLastArgValue(OPT_arch_EQ));
TheImage.Image = std::move(*FileOrErr);
Images[Kind].emplace_back(std::move(TheImage));
}
return Error::success();
});
if (Err)
return std::move(Err);
// Create a binary image of each offloading image and embed it into a new
// object file.
SmallVector<StringRef> WrappedOutput;
for (auto &[Kind, Input] : Images) {
// We sort the entries before bundling so they appear in a deterministic
// order in the final binary.
llvm::sort(Input, [](OffloadingImage &A, OffloadingImage &B) {
return A.StringData["triple"] > B.StringData["triple"] ||
A.StringData["arch"] > B.StringData["arch"] ||
A.TheOffloadKind < B.TheOffloadKind;
});
auto BundledImagesOrErr = bundleLinkedOutput(Input, Args, Kind);
if (!BundledImagesOrErr)
return BundledImagesOrErr.takeError();
auto OutputOrErr = wrapDeviceImages(*BundledImagesOrErr, Args, Kind);
if (!OutputOrErr)
return OutputOrErr.takeError();
WrappedOutput.push_back(*OutputOrErr);
}
return WrappedOutput;
}
std::optional<std::string> findFile(StringRef Dir, StringRef Root,
const Twine &Name) {
SmallString<128> Path;
if (Dir.starts_with("="))
sys::path::append(Path, Root, Dir.substr(1), Name);
else
sys::path::append(Path, Dir, Name);
if (sys::fs::exists(Path))
return static_cast<std::string>(Path);
return std::nullopt;
}
std::optional<std::string>
findFromSearchPaths(StringRef Name, StringRef Root,
ArrayRef<StringRef> SearchPaths) {
for (StringRef Dir : SearchPaths)
if (std::optional<std::string> File = findFile(Dir, Root, Name))
return File;
return std::nullopt;
}
std::optional<std::string>
searchLibraryBaseName(StringRef Name, StringRef Root,
ArrayRef<StringRef> SearchPaths) {
for (StringRef Dir : SearchPaths) {
if (std::optional<std::string> File =
findFile(Dir, Root, "lib" + Name + ".so"))
return File;
if (std::optional<std::string> File =
findFile(Dir, Root, "lib" + Name + ".a"))
return File;
}
return std::nullopt;
}
/// Search for static libraries in the linker's library path given input like
/// `-lfoo` or `-l:libfoo.a`.
std::optional<std::string> searchLibrary(StringRef Input, StringRef Root,
ArrayRef<StringRef> SearchPaths) {
if (Input.starts_with(":") || Input.ends_with(".lib"))
return findFromSearchPaths(Input.drop_front(), Root, SearchPaths);
return searchLibraryBaseName(Input, Root, SearchPaths);
}
/// Common redeclaration of needed symbol flags.
enum Symbol : uint32_t {
Sym_None = 0,
Sym_Undefined = 1U << 1,
Sym_Weak = 1U << 2,
};
/// Scan the symbols from a BitcodeFile \p Buffer and record if we need to
/// extract any symbols from it.
Expected<bool> getSymbolsFromBitcode(MemoryBufferRef Buffer, OffloadKind Kind,
bool IsArchive, StringSaver &Saver,
DenseMap<StringRef, Symbol> &Syms) {
Expected<IRSymtabFile> IRSymtabOrErr = readIRSymtab(Buffer);
if (!IRSymtabOrErr)
return IRSymtabOrErr.takeError();
bool ShouldExtract = !IsArchive;
DenseMap<StringRef, Symbol> TmpSyms;
for (unsigned I = 0; I != IRSymtabOrErr->Mods.size(); ++I) {
for (const auto &Sym : IRSymtabOrErr->TheReader.module_symbols(I)) {
if (Sym.isFormatSpecific() || !Sym.isGlobal())
continue;
bool NewSymbol = Syms.count(Sym.getName()) == 0;
auto OldSym = NewSymbol ? Sym_None : Syms[Sym.getName()];
// We will extract if it defines a currenlty undefined non-weak symbol.
bool ResolvesStrongReference =
((OldSym & Sym_Undefined && !(OldSym & Sym_Weak)) &&
!Sym.isUndefined());
// We will extract if it defines a new global symbol visible to the host.
// This is only necessary for code targeting an offloading language.
bool NewGlobalSymbol =
((NewSymbol || (OldSym & Sym_Undefined)) && !Sym.isUndefined() &&
!Sym.canBeOmittedFromSymbolTable() && Kind != object::OFK_None &&
(Sym.getVisibility() != GlobalValue::HiddenVisibility));
ShouldExtract |= ResolvesStrongReference | NewGlobalSymbol;
// Update this symbol in the "table" with the new information.
if (OldSym & Sym_Undefined && !Sym.isUndefined())
TmpSyms[Saver.save(Sym.getName())] =
static_cast<Symbol>(OldSym & ~Sym_Undefined);
if (Sym.isUndefined() && NewSymbol)
TmpSyms[Saver.save(Sym.getName())] =
static_cast<Symbol>(OldSym | Sym_Undefined);
if (Sym.isWeak())
TmpSyms[Saver.save(Sym.getName())] =
static_cast<Symbol>(OldSym | Sym_Weak);
}
}
// If the file gets extracted we update the table with the new symbols.
if (ShouldExtract)
Syms.insert(std::begin(TmpSyms), std::end(TmpSyms));
return ShouldExtract;
}
/// Scan the symbols from an ObjectFile \p Obj and record if we need to extract
/// any symbols from it.
Expected<bool> getSymbolsFromObject(const ObjectFile &Obj, OffloadKind Kind,
bool IsArchive, StringSaver &Saver,
DenseMap<StringRef, Symbol> &Syms) {
bool ShouldExtract = !IsArchive;
DenseMap<StringRef, Symbol> TmpSyms;
for (SymbolRef Sym : Obj.symbols()) {
auto FlagsOrErr = Sym.getFlags();
if (!FlagsOrErr)
return FlagsOrErr.takeError();
if (!(*FlagsOrErr & SymbolRef::SF_Global) ||
(*FlagsOrErr & SymbolRef::SF_FormatSpecific))
continue;
auto NameOrErr = Sym.getName();
if (!NameOrErr)
return NameOrErr.takeError();
bool NewSymbol = Syms.count(*NameOrErr) == 0;
auto OldSym = NewSymbol ? Sym_None : Syms[*NameOrErr];
// We will extract if it defines a currenlty undefined non-weak symbol.
bool ResolvesStrongReference = (OldSym & Sym_Undefined) &&
!(OldSym & Sym_Weak) &&
!(*FlagsOrErr & SymbolRef::SF_Undefined);
// We will extract if it defines a new global symbol visible to the host.
// This is only necessary for code targeting an offloading language.
bool NewGlobalSymbol =
((NewSymbol || (OldSym & Sym_Undefined)) &&
!(*FlagsOrErr & SymbolRef::SF_Undefined) && Kind != object::OFK_None &&
!(*FlagsOrErr & SymbolRef::SF_Hidden));
ShouldExtract |= ResolvesStrongReference | NewGlobalSymbol;
// Update this symbol in the "table" with the new information.
if (OldSym & Sym_Undefined && !(*FlagsOrErr & SymbolRef::SF_Undefined))
TmpSyms[Saver.save(*NameOrErr)] =
static_cast<Symbol>(OldSym & ~Sym_Undefined);
if (*FlagsOrErr & SymbolRef::SF_Undefined && NewSymbol)
TmpSyms[Saver.save(*NameOrErr)] =
static_cast<Symbol>(OldSym | Sym_Undefined);
if (*FlagsOrErr & SymbolRef::SF_Weak)
TmpSyms[Saver.save(*NameOrErr)] = static_cast<Symbol>(OldSym | Sym_Weak);
}
// If the file gets extracted we update the table with the new symbols.
if (ShouldExtract)
Syms.insert(std::begin(TmpSyms), std::end(TmpSyms));
return ShouldExtract;
}
/// Attempt to 'resolve' symbols found in input files. We use this to
/// determine if an archive member needs to be extracted. An archive member
/// will be extracted if any of the following is true.
/// 1) It defines an undefined symbol in a regular object filie.
/// 2) It defines a global symbol without hidden visibility that has not
/// yet been defined.
Expected<bool> getSymbols(StringRef Image, OffloadKind Kind, bool IsArchive,
StringSaver &Saver,
DenseMap<StringRef, Symbol> &Syms) {
MemoryBufferRef Buffer = MemoryBufferRef(Image, "");
switch (identify_magic(Image)) {
case file_magic::bitcode:
return getSymbolsFromBitcode(Buffer, Kind, IsArchive, Saver, Syms);
case file_magic::elf_relocatable: {
Expected<std::unique_ptr<ObjectFile>> ObjFile =
ObjectFile::createObjectFile(Buffer);
if (!ObjFile)
return ObjFile.takeError();
return getSymbolsFromObject(**ObjFile, Kind, IsArchive, Saver, Syms);
}
default:
return false;
}
}
/// Search the input files and libraries for embedded device offloading code
/// and add it to the list of files to be linked. Files coming from static
/// libraries are only added to the input if they are used by an existing
/// input file. Returns a list of input files intended for a single linking job.
Expected<SmallVector<SmallVector<OffloadFile>>>
getDeviceInput(const ArgList &Args) {
llvm::TimeTraceScope TimeScope("ExtractDeviceCode");
// Skip all the input if the user is overriding the output.
if (Args.hasArg(OPT_override_image))
return SmallVector<SmallVector<OffloadFile>>();
StringRef Root = Args.getLastArgValue(OPT_sysroot_EQ);
SmallVector<StringRef> LibraryPaths;
for (const opt::Arg *Arg : Args.filtered(OPT_library_path, OPT_libpath))
LibraryPaths.push_back(Arg->getValue());
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
// Try to extract device code from the linker input files.
bool WholeArchive = Args.hasArg(OPT_wholearchive_flag) ? true : false;
SmallVector<OffloadFile> ObjectFilesToExtract;
SmallVector<OffloadFile> ArchiveFilesToExtract;
for (const opt::Arg *Arg : Args.filtered(
OPT_INPUT, OPT_library, OPT_whole_archive, OPT_no_whole_archive)) {
if (Arg->getOption().matches(OPT_whole_archive) ||
Arg->getOption().matches(OPT_no_whole_archive)) {
WholeArchive = Arg->getOption().matches(OPT_whole_archive);
continue;
}
std::optional<std::string> Filename =
Arg->getOption().matches(OPT_library)
? searchLibrary(Arg->getValue(), Root, LibraryPaths)
: std::string(Arg->getValue());
if (!Filename && Arg->getOption().matches(OPT_library))
reportError(createStringError(inconvertibleErrorCode(),
"unable to find library -l%s",
Arg->getValue()));
if (!Filename || !sys::fs::exists(*Filename) ||
sys::fs::is_directory(*Filename))
continue;
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFileOrSTDIN(*Filename);
if (std::error_code EC = BufferOrErr.getError())
return createFileError(*Filename, EC);
MemoryBufferRef Buffer = **BufferOrErr;
if (identify_magic(Buffer.getBuffer()) == file_magic::elf_shared_object)
continue;
SmallVector<OffloadFile> Binaries;
if (Error Err = extractOffloadBinaries(Buffer, Binaries))
return std::move(Err);
for (auto &OffloadFile : Binaries) {
if (identify_magic(Buffer.getBuffer()) == file_magic::archive &&
!WholeArchive)
ArchiveFilesToExtract.emplace_back(std::move(OffloadFile));
else
ObjectFilesToExtract.emplace_back(std::move(OffloadFile));
}
}
// Link all standard input files and update the list of symbols.
MapVector<OffloadFile::TargetID, SmallVector<OffloadFile, 0>> InputFiles;
DenseMap<OffloadFile::TargetID, DenseMap<StringRef, Symbol>> Syms;
for (OffloadFile &Binary : ObjectFilesToExtract) {
if (!Binary.getBinary())
continue;
SmallVector<OffloadFile::TargetID> CompatibleTargets = {Binary};
for (const auto &[ID, Input] : InputFiles)
if (object::areTargetsCompatible(Binary, ID))
CompatibleTargets.emplace_back(ID);
for (const auto &[Index, ID] : llvm::enumerate(CompatibleTargets)) {
Expected<bool> ExtractOrErr = getSymbols(
Binary.getBinary()->getImage(), Binary.getBinary()->getOffloadKind(),
/*IsArchive=*/false, Saver, Syms[ID]);
if (!ExtractOrErr)
return ExtractOrErr.takeError();
// If another target needs this binary it must be copied instead.
if (Index == CompatibleTargets.size() - 1)
InputFiles[ID].emplace_back(std::move(Binary));
else
InputFiles[ID].emplace_back(Binary.copy());
}
}
// Archive members only extract if they define needed symbols. We do this
// after every regular input file so that libraries may be included out of
// order. This follows 'ld.lld' semantics which are more lenient.
bool Extracted = true;
while (Extracted) {
Extracted = false;
for (OffloadFile &Binary : ArchiveFilesToExtract) {
// If the binary was previously extracted it will be set to null.
if (!Binary.getBinary())
continue;
SmallVector<OffloadFile::TargetID> CompatibleTargets = {Binary};
for (const auto &[ID, Input] : InputFiles)
if (object::areTargetsCompatible(Binary, ID))
CompatibleTargets.emplace_back(ID);
for (const auto &[Index, ID] : llvm::enumerate(CompatibleTargets)) {
// Only extract an if we have an an object matching this target.
if (!InputFiles.count(ID))
continue;
Expected<bool> ExtractOrErr =
getSymbols(Binary.getBinary()->getImage(),
Binary.getBinary()->getOffloadKind(), /*IsArchive=*/true,
Saver, Syms[ID]);
if (!ExtractOrErr)
return ExtractOrErr.takeError();
Extracted = *ExtractOrErr;
// Skip including the file if it is an archive that does not resolve
// any symbols.
if (!Extracted)
continue;
// If another target needs this binary it must be copied instead.
if (Index == CompatibleTargets.size() - 1)
InputFiles[ID].emplace_back(std::move(Binary));
else
InputFiles[ID].emplace_back(Binary.copy());
}
// If we extracted any files we need to check all the symbols again.
if (Extracted)
break;
}
}
for (StringRef Library : Args.getAllArgValues(OPT_bitcode_library_EQ)) {
auto FileOrErr = getInputBitcodeLibrary(Library);
if (!FileOrErr)
return FileOrErr.takeError();
InputFiles[*FileOrErr].push_back(std::move(*FileOrErr));
}
SmallVector<SmallVector<OffloadFile>> InputsForTarget;
for (auto &[ID, Input] : InputFiles)
InputsForTarget.emplace_back(std::move(Input));
return std::move(InputsForTarget);
}
} // namespace
int main(int Argc, char **Argv) {
InitLLVM X(Argc, Argv);
InitializeAllTargetInfos();
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmParsers();
InitializeAllAsmPrinters();
LinkerExecutable = Argv[0];
sys::PrintStackTraceOnErrorSignal(Argv[0]);
const OptTable &Tbl = getOptTable();
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
auto Args = Tbl.parseArgs(Argc, Argv, OPT_INVALID, Saver, [&](StringRef Err) {
reportError(createStringError(inconvertibleErrorCode(), Err));
});
if (Args.hasArg(OPT_help) || Args.hasArg(OPT_help_hidden)) {
Tbl.printHelp(
outs(),
"clang-linker-wrapper [options] -- <options to passed to the linker>",
"\nA wrapper utility over the host linker. It scans the input files\n"
"for sections that require additional processing prior to linking.\n"
"The will then transparently pass all arguments and input to the\n"
"specified host linker to create the final binary.\n",
Args.hasArg(OPT_help_hidden), Args.hasArg(OPT_help_hidden));
return EXIT_SUCCESS;
}
if (Args.hasArg(OPT_v)) {
printVersion(outs());
return EXIT_SUCCESS;
}
// This forwards '-mllvm' arguments to LLVM if present.
SmallVector<const char *> NewArgv = {Argv[0]};
for (const opt::Arg *Arg : Args.filtered(OPT_mllvm))
NewArgv.push_back(Arg->getValue());
for (const opt::Arg *Arg : Args.filtered(OPT_offload_opt_eq_minus))
NewArgv.push_back(Args.MakeArgString(StringRef("-") + Arg->getValue()));
cl::ParseCommandLineOptions(NewArgv.size(), &NewArgv[0]);
Verbose = Args.hasArg(OPT_verbose);
DryRun = Args.hasArg(OPT_dry_run);
SaveTemps = Args.hasArg(OPT_save_temps);
CudaBinaryPath = Args.getLastArgValue(OPT_cuda_path_EQ).str();
llvm::Triple Triple(
Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple()));
if (Args.hasArg(OPT_o))
ExecutableName = Args.getLastArgValue(OPT_o, "a.out");
else if (Args.hasArg(OPT_out))
ExecutableName = Args.getLastArgValue(OPT_out, "a.exe");
else
ExecutableName = Triple.isOSWindows() ? "a.exe" : "a.out";
parallel::strategy = hardware_concurrency(1);
if (auto *Arg = Args.getLastArg(OPT_wrapper_jobs)) {
unsigned Threads = 0;
if (!llvm::to_integer(Arg->getValue(), Threads) || Threads == 0)
reportError(createStringError(
inconvertibleErrorCode(), "%s: expected a positive integer, got '%s'",
Arg->getSpelling().data(), Arg->getValue()));
parallel::strategy = hardware_concurrency(Threads);
}
if (Args.hasArg(OPT_wrapper_time_trace_eq)) {
unsigned Granularity;
Args.getLastArgValue(OPT_wrapper_time_trace_granularity, "500")
.getAsInteger(10, Granularity);
timeTraceProfilerInitialize(Granularity, Argv[0]);
}
{
llvm::TimeTraceScope TimeScope("Execute linker wrapper");
// Extract the device input files stored in the host fat binary.
auto DeviceInputFiles = getDeviceInput(Args);
if (!DeviceInputFiles)
reportError(DeviceInputFiles.takeError());
// Link and wrap the device images extracted from the linker input.
auto FilesOrErr =
linkAndWrapDeviceFiles(*DeviceInputFiles, Args, Argv, Argc);
if (!FilesOrErr)
reportError(FilesOrErr.takeError());
// Run the host linking job with the rendered arguments.
if (Error Err = runLinker(*FilesOrErr, Args))
reportError(std::move(Err));
}
if (const opt::Arg *Arg = Args.getLastArg(OPT_wrapper_time_trace_eq)) {
if (Error Err = timeTraceProfilerWrite(Arg->getValue(), ExecutableName))
reportError(std::move(Err));
timeTraceProfilerCleanup();
}
// Remove the temporary files created.
if (!SaveTemps)
for (const auto &TempFile : TempFiles)
if (std::error_code EC = sys::fs::remove(TempFile))
reportError(createFileError(TempFile, EC));
return EXIT_SUCCESS;
}
|