1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
// RUN: %clang_cc1 -std=c++2c -fsyntax-only -verify %s
namespace lambda_calls {
template <class>
concept True = true;
template <class>
concept False = false; // #False
template <class T> struct S {
template <class... U> using type = decltype([](U...) {}(U()...));
template <class U> using type2 = decltype([](auto) {}(1));
template <class U> using type3 = decltype([](True auto) {}(1));
template <class>
using type4 = decltype([](auto... pack) { return sizeof...(pack); }(1, 2));
template <class U> using type5 = decltype([](False auto...) {}(1)); // #Type5
template <class U>
using type6 = decltype([]<True> {}.template operator()<char>());
template <class U>
using type7 = decltype([]<False> {}.template operator()<char>()); // #Type7
template <class U>
using type8 = decltype([]() // #Type8
requires(sizeof(U) == 32) // #Type8-requirement
{}());
template <class... U>
using type9 = decltype([]<True>(U...) {}.template operator()<char>(U()...));
// https://github.com/llvm/llvm-project/issues/76674
template <class U>
using type10 = decltype([]<class V> { return V(); }.template operator()<U>());
template <class U> using type11 = decltype([] { return U{}; });
};
template <class> using Meow = decltype([]<True> {}.template operator()<int>());
template <class... U>
using MeowMeow = decltype([]<True>(U...) {}.template operator()<char>(U()...));
// https://github.com/llvm/llvm-project/issues/70601
template <class> using U = decltype([]<True> {}.template operator()<int>());
U<int> foo();
void bar() {
using T = S<int>::type<int, int, int>;
using T2 = S<int>::type2<int>;
using T3 = S<int>::type3<char>;
using T4 = S<int>::type4<void>;
using T5 = S<int>::type5<void>; // #T5
// expected-error@#Type5 {{no matching function for call}}
// expected-note@#T5 {{type alias 'type5' requested here}}
// expected-note@#Type5 {{constraints not satisfied [with auto:1 = <int>]}}
// expected-note@#Type5 {{because 'int' does not satisfy 'False'}}
// expected-note@#False {{because 'false' evaluated to false}}
using T6 = S<int>::type6<void>;
using T7 = S<int>::type7<void>; // #T7
// expected-error@#Type7 {{no matching member function for call}}
// expected-note@#T7 {{type alias 'type7' requested here}}
// expected-note@#Type7 {{constraints not satisfied [with $0 = char]}}
// expected-note@#Type7 {{because 'char' does not satisfy 'False'}}
// expected-note@#False {{because 'false' evaluated to false}}
using T8 = S<int>::type8<char>; // #T8
// expected-error@#Type8 {{no matching function for call}}
// expected-note@#T8 {{type alias 'type8' requested here}}
// expected-note@#Type8 {{constraints not satisfied}}
// expected-note@#Type8-requirement {{because 'sizeof(char) == 32' (1 == 32) evaluated to false}}
using T9 = S<int>::type9<long, long, char>;
using T10 = S<int>::type10<int>;
using T11 = S<int>::type11<int>;
int x = T11()();
using T12 = Meow<int>;
using T13 = MeowMeow<char, int, long, unsigned>;
static_assert(__is_same(T, void));
static_assert(__is_same(T2, void));
static_assert(__is_same(T3, void));
static_assert(__is_same(T4, decltype(sizeof(0))));
static_assert(__is_same(T6, void));
static_assert(__is_same(T9, void));
static_assert(__is_same(T10, int));
static_assert(__is_same(T12, void));
static_assert(__is_same(T13, void));
}
namespace GH82104 {
template <typename, typename... D> constexpr int Value = sizeof...(D);
template <typename T, typename... U>
using T14 = decltype([]<int V = 0>(auto Param) {
return Value<T, U...> + V + (int)sizeof(Param);
}("hello"));
template <typename T> using T15 = T14<T, T>;
static_assert(__is_same(T15<char>, int));
// FIXME: This still crashes because we can't extract template arguments T and U
// outside of the instantiation context of T16.
#if 0
template <typename T, typename... U>
using T16 = decltype([](auto Param) requires (sizeof(Param) != 1 && sizeof...(U) > 0) {
return Value<T, U...> + sizeof(Param);
});
static_assert(T16<int, char, float>()(42) == 2 + sizeof(42));
#endif
} // namespace GH82104
namespace GH89853 {
template <typename = void>
static constexpr auto innocuous = []<int m> { return m; };
template <auto Pred = innocuous<>>
using broken = decltype(Pred.template operator()<42>());
broken<> *boom;
template <auto Pred =
[]<char c> {
(void)static_cast<char>(c);
}>
using broken2 = decltype(Pred.template operator()<42>());
broken2<> *boom2;
template <auto Pred = []<char m> { return m; }>
using broken3 = decltype(Pred.template operator()<42>());
broken3<> *boom3;
static constexpr auto non_default = []<char c>(True auto) {
(void) static_cast<char>(c);
};
template<True auto Pred>
using broken4 = decltype(Pred.template operator()<42>(Pred));
broken4<non_default>* boom4;
} // namespace GH89853
namespace GH105885 {
template<int>
using test = decltype([](auto...) {
}());
static_assert(__is_same(test<0>, void));
} // namespace GH105885
namespace GH102760 {
auto make_tuple = []< class Tag, class... Captures>(Tag, Captures...) {
return []< class _Fun >( _Fun) -> void requires requires { 0; }
{};
};
template < class, class... _As >
using Result = decltype(make_tuple(0)(_As{}...));
using T = Result<int, int>;
} // namespace GH102760
} // namespace lambda_calls
|