1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
// RUN: %clang_cc1 -std=c++11 -verify %s -pedantic
// RUN: %clang_cc1 -std=c++11 -verify %s -pedantic -fexperimental-new-constant-interpreter
// RUN: %clang_cc1 -std=c++20 -verify %s -pedantic
// RUN: %clang_cc1 -std=c++20 -verify %s -pedantic -fexperimental-new-constant-interpreter
namespace PR31692 {
struct A {
struct X { int n = 0; } x;
// Trigger construction of X() from a SFINAE context. This must not mark
// any part of X as invalid.
static_assert(!__is_constructible(X), "");
// Check that X::n is not marked invalid.
double &r = x.n; // expected-error {{non-const lvalue reference to type 'double' cannot bind to a value of unrelated type 'int'}}
};
// A::X can now be default-constructed.
static_assert(__is_constructible(A::X), "");
}
struct S {
} constexpr s;
struct C {
C(S);
};
class MemInit {
C m = s;
};
namespace std {
typedef decltype(sizeof(int)) size_t;
// libc++'s implementation
template <class _E> class initializer_list {
const _E *__begin_;
size_t __size_;
initializer_list(const _E *__b, size_t __s) : __begin_(__b), __size_(__s) {}
public:
typedef _E value_type;
typedef const _E &reference;
typedef const _E &const_reference;
typedef size_t size_type;
typedef const _E *iterator;
typedef const _E *const_iterator;
initializer_list() : __begin_(nullptr), __size_(0) {}
size_t size() const { return __size_; }
const _E *begin() const { return __begin_; }
const _E *end() const { return __begin_ + __size_; }
};
} // namespace std
#if __cplusplus >= 201703L
// Test CXXDefaultInitExpr rebuild issue in
// https://github.com/llvm/llvm-project/pull/87933
namespace test_rebuild {
template <typename T, int> class C {
public:
C(std::initializer_list<T>);
};
template <typename T> using Ptr = __remove_pointer(T) *;
template <typename T> C(T) -> C<Ptr<T>, sizeof(T)>;
class A {
public:
template <typename T1, typename T2> T1 *some_func(T2 &&);
};
struct B : A {
int *ar = some_func<int>(C{some_func<int>(0)});
B() {}
};
int TestBody_got;
template <int> class Vector {
public:
Vector(std::initializer_list<int>);
};
template <typename... Ts> Vector(Ts...) -> Vector<sizeof...(Ts)>;
class ProgramBuilder {
public:
template <typename T, typename ARGS> int *create(ARGS);
};
struct TypeTest : ProgramBuilder {
int *str_f16 = create<int>(Vector{0});
TypeTest() {}
};
class TypeTest_Element_Test : TypeTest {
void TestBody();
};
void TypeTest_Element_Test::TestBody() {
int *expect = str_f16;
&TestBody_got != expect; // expected-warning {{inequality comparison result unused}}
}
} // namespace test_rebuild
// Test CXXDefaultInitExpr rebuild issue in
// https://github.com/llvm/llvm-project/pull/92527
namespace test_rebuild2 {
struct F {
int g;
};
struct H {};
struct I {
I(const F &);
I(H);
};
struct L {
I i = I({.g = 0});
};
struct N : L {};
void f() {
delete new L; // Ok
delete new N; // Ok
}
} // namespace test_rebuild2
#endif // __cplusplus >= 201703L
#if __cplusplus >= 202002L
// This test ensures cleanup expressions are correctly produced
// in the presence of default member initializers.
namespace PR136554 {
struct string {
constexpr string(const char*) {};
constexpr ~string();
};
struct S;
struct optional {
template <typename U = S>
constexpr optional(U &&) {}
};
struct S {
string a;
optional b;
int defaulted = 0;
} test {
"", {
{ "", 0 }
}
};
// Ensure that the this pointer is
// transformed without crashing
consteval int immediate() { return 0;}
struct StructWithThisInInitializer {
int member() const {
return 0;
}
int m = member() + immediate();
int m2 = this->member() + immediate();
};
template <typename T>
struct StructWithThisInInitializerTPL {
template <typename U>
int member() const {
return 0;
}
int m = member<int>() + immediate();
int m2 = this->member<int>() + immediate();
};
void test_this() {
(void)StructWithThisInInitializer{};
(void)StructWithThisInInitializerTPL<int>{};
}
struct ReferenceToNestedMembers {
int m;
int a = ((void)immediate(), m); // ensure g is found in the correct scope
int b = ((void)immediate(), this->m); // ensure g is found in the correct scope
};
struct ReferenceToNestedMembersTest {
void* m = nullptr;
ReferenceToNestedMembers j{0};
} test_reference_to_nested_members;
}
namespace odr_in_unevaluated_context {
template <typename e, bool = __is_constructible(e)> struct f {
using type = bool;
};
template <class k, f<k>::type = false> int l;
int m;
struct p {
// This used to crash because m is first marked odr used
// during parsing, but subsequently used in an unevaluated context
// without being transformed.
int o = m;
p() {}
};
int i = l<p>;
}
#endif
|