1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
// RUN: %clang_cc1 %s -emit-llvm -ffp-exception-behavior=maytrap -o - -triple x86_64-unknown-unknown | FileCheck %s
// Test that the constrained intrinsics are picking up the exception
// metadata from the AST instead of the global default from the command line.
// FIXME: these functions shouldn't trap on SNaN.
#pragma float_control(except, on)
int printf(const char *, ...);
// CHECK-LABEL: @p(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[STR_ADDR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: [[X_ADDR:%.*]] = alloca i32, align 4
// CHECK-NEXT: store ptr [[STR:%.*]], ptr [[STR_ADDR]], align 8
// CHECK-NEXT: store i32 [[X:%.*]], ptr [[X_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[STR_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load i32, ptr [[X_ADDR]], align 4
// CHECK-NEXT: [[CALL:%.*]] = call i32 (ptr, ...) @printf(ptr noundef @.str, ptr noundef [[TMP0]], i32 noundef [[TMP1]]) #[[ATTR4:[0-9]+]]
// CHECK-NEXT: ret void
//
void p(char *str, int x) {
printf("%s: %d\n", str, x);
}
#define P(n,args) p(#n #args, __builtin_##n args)
// CHECK-LABEL: @test_fpclassify(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[D_ADDR:%.*]] = alloca double, align 8
// CHECK-NEXT: store double [[D:%.*]], ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load double, ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[ISZERO:%.*]] = call i1 @llvm.experimental.constrained.fcmp.f64(double [[TMP0]], double 0.000000e+00, metadata !"oeq", metadata !"fpexcept.strict") #[[ATTR4]]
// CHECK-NEXT: br i1 [[ISZERO]], label [[FPCLASSIFY_END:%.*]], label [[FPCLASSIFY_NOT_ZERO:%.*]]
// CHECK: fpclassify_end:
// CHECK-NEXT: [[FPCLASSIFY_RESULT:%.*]] = phi i32 [ 4, [[ENTRY:%.*]] ], [ 0, [[FPCLASSIFY_NOT_ZERO]] ], [ 1, [[FPCLASSIFY_NOT_NAN:%.*]] ], [ [[TMP2:%.*]], [[FPCLASSIFY_NOT_INF:%.*]] ]
// CHECK-NEXT: call void @p(ptr noundef @.str.1, i32 noundef [[FPCLASSIFY_RESULT]]) #[[ATTR4]]
// CHECK-NEXT: ret void
// CHECK: fpclassify_not_zero:
// CHECK-NEXT: [[CMP:%.*]] = call i1 @llvm.experimental.constrained.fcmp.f64(double [[TMP0]], double [[TMP0]], metadata !"uno", metadata !"fpexcept.strict") #[[ATTR4]]
// CHECK-NEXT: br i1 [[CMP]], label [[FPCLASSIFY_END]], label [[FPCLASSIFY_NOT_NAN]]
// CHECK: fpclassify_not_nan:
// CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.fabs.f64(double [[TMP0]]) #[[ATTR5:[0-9]+]]
// CHECK-NEXT: [[ISINF:%.*]] = call i1 @llvm.experimental.constrained.fcmp.f64(double [[TMP1]], double 0x7FF0000000000000, metadata !"oeq", metadata !"fpexcept.strict") #[[ATTR4]]
// CHECK-NEXT: br i1 [[ISINF]], label [[FPCLASSIFY_END]], label [[FPCLASSIFY_NOT_INF]]
// CHECK: fpclassify_not_inf:
// CHECK-NEXT: [[ISNORMAL:%.*]] = call i1 @llvm.experimental.constrained.fcmp.f64(double [[TMP1]], double 0x10000000000000, metadata !"uge", metadata !"fpexcept.strict") #[[ATTR4]]
// CHECK-NEXT: [[TMP2]] = select i1 [[ISNORMAL]], i32 2, i32 3
// CHECK-NEXT: br label [[FPCLASSIFY_END]]
//
void test_fpclassify(double d) {
P(fpclassify, (0, 1, 2, 3, 4, d));
return;
}
// CHECK-LABEL: @test_fp16_isinf(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[H_ADDR:%.*]] = alloca half, align 2
// CHECK-NEXT: store half [[H:%.*]], ptr [[H_ADDR]], align 2
// CHECK-NEXT: [[TMP0:%.*]] = load half, ptr [[H_ADDR]], align 2
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f16(half [[TMP0]], i32 516) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.2, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_fp16_isinf(_Float16 h) {
P(isinf, (h));
return;
}
// CHECK-LABEL: @test_float_isinf(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[F_ADDR:%.*]] = alloca float, align 4
// CHECK-NEXT: store float [[F:%.*]], ptr [[F_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load float, ptr [[F_ADDR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f32(float [[TMP0]], i32 516) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.3, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_float_isinf(float f) {
P(isinf, (f));
return;
}
// CHECK-LABEL: @test_double_isinf(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[D_ADDR:%.*]] = alloca double, align 8
// CHECK-NEXT: store double [[D:%.*]], ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load double, ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f64(double [[TMP0]], i32 516) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.4, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_double_isinf(double d) {
P(isinf, (d));
return;
}
// CHECK-LABEL: @test_fp16_isfinite(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[H_ADDR:%.*]] = alloca half, align 2
// CHECK-NEXT: store half [[H:%.*]], ptr [[H_ADDR]], align 2
// CHECK-NEXT: [[TMP0:%.*]] = load half, ptr [[H_ADDR]], align 2
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f16(half [[TMP0]], i32 504) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.5, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_fp16_isfinite(_Float16 h) {
P(isfinite, (h));
return;
}
// CHECK-LABEL: @test_float_isfinite(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[F_ADDR:%.*]] = alloca float, align 4
// CHECK-NEXT: store float [[F:%.*]], ptr [[F_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load float, ptr [[F_ADDR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f32(float [[TMP0]], i32 504) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.6, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_float_isfinite(float f) {
P(isfinite, (f));
return;
}
// CHECK-LABEL: @test_double_isfinite(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[D_ADDR:%.*]] = alloca double, align 8
// CHECK-NEXT: store double [[D:%.*]], ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load double, ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f64(double [[TMP0]], i32 504) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.7, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_double_isfinite(double d) {
P(isfinite, (d));
return;
}
// CHECK-LABEL: @test_isinf_sign(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[D_ADDR:%.*]] = alloca double, align 8
// CHECK-NEXT: store double [[D:%.*]], ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load double, ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = call double @llvm.fabs.f64(double [[TMP0]]) #[[ATTR5]]
// CHECK-NEXT: [[ISINF:%.*]] = call i1 @llvm.experimental.constrained.fcmp.f64(double [[TMP1]], double 0x7FF0000000000000, metadata !"oeq", metadata !"fpexcept.strict") #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = bitcast double [[TMP0]] to i64
// CHECK-NEXT: [[TMP3:%.*]] = icmp slt i64 [[TMP2]], 0
// CHECK-NEXT: [[TMP4:%.*]] = select i1 [[TMP3]], i32 -1, i32 1
// CHECK-NEXT: [[TMP5:%.*]] = select i1 [[ISINF]], i32 [[TMP4]], i32 0
// CHECK-NEXT: call void @p(ptr noundef @.str.8, i32 noundef [[TMP5]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_isinf_sign(double d) {
P(isinf_sign, (d));
return;
}
// CHECK-LABEL: @test_fp16_isnan(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[H_ADDR:%.*]] = alloca half, align 2
// CHECK-NEXT: store half [[H:%.*]], ptr [[H_ADDR]], align 2
// CHECK-NEXT: [[TMP0:%.*]] = load half, ptr [[H_ADDR]], align 2
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f16(half [[TMP0]], i32 3) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.9, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_fp16_isnan(_Float16 h) {
P(isnan, (h));
return;
}
// CHECK-LABEL: @test_float_isnan(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[F_ADDR:%.*]] = alloca float, align 4
// CHECK-NEXT: store float [[F:%.*]], ptr [[F_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load float, ptr [[F_ADDR]], align 4
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f32(float [[TMP0]], i32 3) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.10, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_float_isnan(float f) {
P(isnan, (f));
return;
}
// CHECK-LABEL: @test_double_isnan(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[D_ADDR:%.*]] = alloca double, align 8
// CHECK-NEXT: store double [[D:%.*]], ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load double, ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f64(double [[TMP0]], i32 3) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.11, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_double_isnan(double d) {
P(isnan, (d));
return;
}
// CHECK-LABEL: @test_isnormal(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[D_ADDR:%.*]] = alloca double, align 8
// CHECK-NEXT: store double [[D:%.*]], ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load double, ptr [[D_ADDR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = call i1 @llvm.is.fpclass.f64(double [[TMP0]], i32 264) #[[ATTR4]]
// CHECK-NEXT: [[TMP2:%.*]] = zext i1 [[TMP1]] to i32
// CHECK-NEXT: call void @p(ptr noundef @.str.12, i32 noundef [[TMP2]]) #[[ATTR4]]
// CHECK-NEXT: ret void
//
void test_isnormal(double d) {
P(isnormal, (d));
return;
}
|