aboutsummaryrefslogtreecommitdiff
path: root/clang/test/CodeGen/attr-arm-sve-vector-bits-codegen.c
blob: 06fbb0027d7c16918e3bf89ff231ace13655cad2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
// RUN: %clang_cc1 -triple aarch64 -target-feature +sve -target-feature +bf16 -mvscale-min=4 -mvscale-max=4 -disable-llvm-passes -emit-llvm -o - %s | FileCheck %s

// REQUIRES: aarch64-registered-target

#include <arm_sve.h>

#define N __ARM_FEATURE_SVE_BITS

typedef svint32_t fixed_int32_t __attribute__((arm_sve_vector_bits(N)));
typedef svbool_t fixed_bool_t __attribute__((arm_sve_vector_bits(N)));
typedef uint8_t uint8_vec_t __attribute__((vector_size(N / 64)));

fixed_bool_t global_pred;
fixed_int32_t global_vec;

// CHECK-LABEL: @foo(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[RETVAL:%.*]] = alloca <16 x i32>, align 16
// CHECK-NEXT:    [[PRED_ADDR:%.*]] = alloca <vscale x 16 x i1>, align 2
// CHECK-NEXT:    [[VEC_ADDR:%.*]] = alloca <vscale x 4 x i32>, align 16
// CHECK-NEXT:    [[PG:%.*]] = alloca <vscale x 16 x i1>, align 2
// CHECK-NEXT:    store <vscale x 16 x i1> [[PRED:%.*]], ptr [[PRED_ADDR]], align 2
// CHECK-NEXT:    store <vscale x 4 x i32> [[VEC:%.*]], ptr [[VEC_ADDR]], align 16
// CHECK-NEXT:    [[TMP0:%.*]] = load <vscale x 16 x i1>, ptr [[PRED_ADDR]], align 2
// CHECK-NEXT:    [[TMP1:%.*]] = load <8 x i8>, ptr @global_pred, align 2
// CHECK-NEXT:    [[CASTFIXEDSVE:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> poison, <8 x i8> [[TMP1]], i64 0)
// CHECK-NEXT:    [[TMP2:%.*]] = bitcast <vscale x 2 x i8> [[CASTFIXEDSVE]] to <vscale x 16 x i1>
// CHECK-NEXT:    [[TMP3:%.*]] = load <8 x i8>, ptr @global_pred, align 2
// CHECK-NEXT:    [[CASTFIXEDSVE2:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> poison, <8 x i8> [[TMP3]], i64 0)
// CHECK-NEXT:    [[TMP4:%.*]] = bitcast <vscale x 2 x i8> [[CASTFIXEDSVE2]] to <vscale x 16 x i1>
// CHECK-NEXT:    [[TMP5:%.*]] = call <vscale x 16 x i1> @llvm.aarch64.sve.and.z.nxv16i1(<vscale x 16 x i1> [[TMP0]], <vscale x 16 x i1> [[TMP2]], <vscale x 16 x i1> [[TMP4]])
// CHECK-NEXT:    store <vscale x 16 x i1> [[TMP5]], ptr [[PG]], align 2
// CHECK-NEXT:    [[TMP6:%.*]] = load <vscale x 16 x i1>, ptr [[PG]], align 2
// CHECK-NEXT:    [[TMP7:%.*]] = load <16 x i32>, ptr @global_vec, align 16
// CHECK-NEXT:    [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP7]], i64 0)
// CHECK-NEXT:    [[TMP8:%.*]] = load <vscale x 4 x i32>, ptr [[VEC_ADDR]], align 16
// CHECK-NEXT:    [[TMP9:%.*]] = call <vscale x 4 x i1> @llvm.aarch64.sve.convert.from.svbool.nxv4i1(<vscale x 16 x i1> [[TMP6]])
// CHECK-NEXT:    [[TMP10:%.*]] = call <vscale x 4 x i32> @llvm.aarch64.sve.add.nxv4i32(<vscale x 4 x i1> [[TMP9]], <vscale x 4 x i32> [[CASTSCALABLESVE]], <vscale x 4 x i32> [[TMP8]])
// CHECK-NEXT:    [[CASTFIXEDSVE3:%.*]] = call <16 x i32> @llvm.vector.extract.v16i32.nxv4i32(<vscale x 4 x i32> [[TMP10]], i64 0)
// CHECK-NEXT:    store <16 x i32> [[CASTFIXEDSVE3]], ptr [[RETVAL]], align 16
// CHECK-NEXT:    [[TMP11:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 16
// CHECK-NEXT:    [[CASTSCALABLESVE4:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP11]], i64 0)
// CHECK-NEXT:    ret <vscale x 4 x i32> [[CASTSCALABLESVE4]]
//
fixed_int32_t foo(svbool_t pred, svint32_t vec) {
  svbool_t pg = svand_z(pred, global_pred, global_pred);
  return svadd_m(pg, global_vec, vec);
}

// CHECK-LABEL: @test_ptr_to_global(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[RETVAL:%.*]] = alloca <16 x i32>, align 16
// CHECK-NEXT:    [[GLOBAL_VEC_PTR:%.*]] = alloca ptr, align 8
// CHECK-NEXT:    store ptr @global_vec, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT:    [[TMP0:%.*]] = load ptr, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT:    [[TMP1:%.*]] = load <16 x i32>, ptr [[TMP0]], align 16
// CHECK-NEXT:    store <16 x i32> [[TMP1]], ptr [[RETVAL]], align 16
// CHECK-NEXT:    [[TMP2:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 16
// CHECK-NEXT:    [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP2]], i64 0)
// CHECK-NEXT:    ret <vscale x 4 x i32> [[CASTSCALABLESVE]]
//
fixed_int32_t test_ptr_to_global() {
  fixed_int32_t *global_vec_ptr;
  global_vec_ptr = &global_vec;
  return *global_vec_ptr;
}

//
// Test casting pointer from fixed-length array to scalable vector.
// CHECK-LABEL: @array_arg(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[RETVAL:%.*]] = alloca <16 x i32>, align 16
// CHECK-NEXT:    [[ARR_ADDR:%.*]] = alloca ptr, align 8
// CHECK-NEXT:    store ptr [[ARR:%.*]], ptr [[ARR_ADDR]], align 8
// CHECK-NEXT:    [[TMP0:%.*]] = load ptr, ptr [[ARR_ADDR]], align 8
// CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds <16 x i32>, ptr [[TMP0]], i64 0
// CHECK-NEXT:    [[TMP1:%.*]] = load <16 x i32>, ptr [[ARRAYIDX]], align 16
// CHECK-NEXT:    store <16 x i32> [[TMP1]], ptr [[RETVAL]], align 16
// CHECK-NEXT:    [[TMP2:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 16
// CHECK-NEXT:    [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP2]], i64 0)
// CHECK-NEXT:    ret <vscale x 4 x i32> [[CASTSCALABLESVE]]
//
fixed_int32_t array_arg(fixed_int32_t arr[]) {
  return arr[0];
}

// CHECK-LABEL: @address_of_array_idx(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[RETVAL:%.*]] = alloca <8 x i8>, align 2
// CHECK-NEXT:    [[ARR:%.*]] = alloca [3 x <8 x i8>], align 2
// CHECK-NEXT:    [[PARR:%.*]] = alloca ptr, align 8
// CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <8 x i8>], ptr [[ARR]], i64 0, i64 0
// CHECK-NEXT:    store ptr [[ARRAYIDX]], ptr [[PARR]], align 8
// CHECK-NEXT:    [[TMP0:%.*]] = load ptr, ptr [[PARR]], align 8
// CHECK-NEXT:    [[TMP1:%.*]] = load <8 x i8>, ptr [[TMP0]], align 2
// CHECK-NEXT:    store <8 x i8> [[TMP1]], ptr [[RETVAL]], align 2
// CHECK-NEXT:    [[TMP2:%.*]] = load <8 x i8>, ptr [[RETVAL]], align 2
// CHECK-NEXT:    [[CASTFIXEDSVE:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> poison, <8 x i8> [[TMP2]], i64 0)
// CHECK-NEXT:    [[TMP3:%.*]] = bitcast <vscale x 2 x i8> [[CASTFIXEDSVE]] to <vscale x 16 x i1>
// CHECK-NEXT:    ret <vscale x 16 x i1> [[TMP3]]
//
fixed_bool_t address_of_array_idx() {
  fixed_bool_t arr[3];
  fixed_bool_t *parr;
  parr = &arr[0];
  return *parr;
}

// CHECK-LABEL: @test_cast(
// CHECK-NEXT:  entry:
// CHECK-NEXT:    [[RETVAL:%.*]] = alloca <16 x i32>, align 16
// CHECK-NEXT:    [[PRED_ADDR:%.*]] = alloca <vscale x 16 x i1>, align 2
// CHECK-NEXT:    [[VEC_ADDR:%.*]] = alloca <vscale x 4 x i32>, align 16
// CHECK-NEXT:    [[XX:%.*]] = alloca <8 x i8>, align 8
// CHECK-NEXT:    [[YY:%.*]] = alloca <8 x i8>, align 8
// CHECK-NEXT:    [[PG:%.*]] = alloca <vscale x 16 x i1>, align 2
// CHECK-NEXT:    store <vscale x 16 x i1> [[PRED:%.*]], ptr [[PRED_ADDR]], align 2
// CHECK-NEXT:    store <vscale x 4 x i32> [[VEC:%.*]], ptr [[VEC_ADDR]], align 16
// CHECK-NEXT:    store <8 x i8> <i8 1, i8 2, i8 3, i8 4, i8 0, i8 0, i8 0, i8 0>, ptr [[XX]], align 8
// CHECK-NEXT:    store <8 x i8> <i8 2, i8 5, i8 4, i8 6, i8 0, i8 0, i8 0, i8 0>, ptr [[YY]], align 8
// CHECK-NEXT:    [[TMP0:%.*]] = load <vscale x 16 x i1>, ptr [[PRED_ADDR]], align 2
// CHECK-NEXT:    [[TMP1:%.*]] = load <8 x i8>, ptr @global_pred, align 2
// CHECK-NEXT:    [[CASTFIXEDSVE:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> poison, <8 x i8> [[TMP1]], i64 0)
// CHECK-NEXT:    [[TMP2:%.*]] = bitcast <vscale x 2 x i8> [[CASTFIXEDSVE]] to <vscale x 16 x i1>
// CHECK-NEXT:    [[TMP3:%.*]] = load <8 x i8>, ptr [[XX]], align 8
// CHECK-NEXT:    [[TMP4:%.*]] = load <8 x i8>, ptr [[YY]], align 8
// CHECK-NEXT:    [[ADD:%.*]] = add <8 x i8> [[TMP3]], [[TMP4]]
// CHECK-NEXT:    [[CASTFIXEDSVE2:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> poison, <8 x i8> [[ADD]], i64 0)
// CHECK-NEXT:    [[TMP5:%.*]] = bitcast <vscale x 2 x i8> [[CASTFIXEDSVE2]] to <vscale x 16 x i1>
// CHECK-NEXT:    [[TMP6:%.*]] = call <vscale x 16 x i1> @llvm.aarch64.sve.and.z.nxv16i1(<vscale x 16 x i1> [[TMP0]], <vscale x 16 x i1> [[TMP2]], <vscale x 16 x i1> [[TMP5]])
// CHECK-NEXT:    store <vscale x 16 x i1> [[TMP6]], ptr [[PG]], align 2
// CHECK-NEXT:    [[TMP7:%.*]] = load <vscale x 16 x i1>, ptr [[PG]], align 2
// CHECK-NEXT:    [[TMP8:%.*]] = load <16 x i32>, ptr @global_vec, align 16
// CHECK-NEXT:    [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP8]], i64 0)
// CHECK-NEXT:    [[TMP9:%.*]] = load <vscale x 4 x i32>, ptr [[VEC_ADDR]], align 16
// CHECK-NEXT:    [[TMP10:%.*]] = call <vscale x 4 x i1> @llvm.aarch64.sve.convert.from.svbool.nxv4i1(<vscale x 16 x i1> [[TMP7]])
// CHECK-NEXT:    [[TMP11:%.*]] = call <vscale x 4 x i32> @llvm.aarch64.sve.add.nxv4i32(<vscale x 4 x i1> [[TMP10]], <vscale x 4 x i32> [[CASTSCALABLESVE]], <vscale x 4 x i32> [[TMP9]])
// CHECK-NEXT:    [[CASTFIXEDSVE3:%.*]] = call <16 x i32> @llvm.vector.extract.v16i32.nxv4i32(<vscale x 4 x i32> [[TMP11]], i64 0)
// CHECK-NEXT:    store <16 x i32> [[CASTFIXEDSVE3]], ptr [[RETVAL]], align 16
// CHECK-NEXT:    [[TMP12:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 16
// CHECK-NEXT:    [[CASTSCALABLESVE4:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP12]], i64 0)
// CHECK-NEXT:    ret <vscale x 4 x i32> [[CASTSCALABLESVE4]]
//
fixed_int32_t test_cast(svbool_t pred, svint32_t vec) {
  uint8_vec_t xx = {1, 2, 3, 4};
  uint8_vec_t yy = {2, 5, 4, 6};
  svbool_t pg = svand_z(pred, global_pred, xx + yy);
  return svadd_m(pg, global_vec, vec);
}