1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
// RUN: %clang_cc1 -triple riscv64-none-linux-gnu -target-feature +f -target-feature +d -target-feature +zve64d -mvscale-min=4 -mvscale-max=4 -disable-llvm-passes -emit-llvm -o - %s | FileCheck %s
// REQUIRES: riscv-registered-target
#include <riscv_vector.h>
typedef __rvv_int8m1_t vint8m1_t;
typedef __rvv_uint8m1_t vuint8m1_t;
typedef __rvv_int16m1_t vint16m1_t;
typedef __rvv_uint16m1_t vuint16m1_t;
typedef __rvv_int32m1_t vint32m1_t;
typedef __rvv_uint32m1_t vuint32m1_t;
typedef __rvv_int64m1_t vint64m1_t;
typedef __rvv_uint64m1_t vuint64m1_t;
typedef __rvv_float32m1_t vfloat32m1_t;
typedef __rvv_float64m1_t vfloat64m1_t;
typedef __rvv_int8m2_t vint8m2_t;
typedef __rvv_uint8m2_t vuint8m2_t;
typedef __rvv_int16m2_t vint16m2_t;
typedef __rvv_uint16m2_t vuint16m2_t;
typedef __rvv_int32m2_t vint32m2_t;
typedef __rvv_uint32m2_t vuint32m2_t;
typedef __rvv_int64m2_t vint64m2_t;
typedef __rvv_uint64m2_t vuint64m2_t;
typedef __rvv_float32m2_t vfloat32m2_t;
typedef __rvv_float64m2_t vfloat64m2_t;
typedef __rvv_bool1_t vbool1_t;
typedef __rvv_bool4_t vbool4_t;
typedef __rvv_bool32_t vbool32_t;
typedef vint32m1_t fixed_int32m1_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen)));
typedef vint32m2_t fixed_int32m2_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen * 2)));
typedef vint16m4_t fixed_int16m4_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen * 4)));
typedef vint8m8_t fixed_int8m8_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen * 8)));
typedef vbool1_t fixed_bool1_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen)));
typedef vbool4_t fixed_bool4_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen/4)));
typedef vbool32_t fixed_bool32_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen/32)));
fixed_int32m1_t global_vec;
fixed_int32m2_t global_vec_m2;
fixed_int8m8_t global_vec_int8m8;
fixed_int16m4_t global_vec_int16m4;
fixed_bool1_t global_bool1;
fixed_bool4_t global_bool4;
fixed_bool32_t global_bool32;
// CHECK-LABEL: @test_bool1(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <256 x i8>, align 8
// CHECK-NEXT: [[M_ADDR:%.*]] = alloca <vscale x 64 x i1>, align 1
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 64 x i8>, align 1
// CHECK-NEXT: [[MASK:%.*]] = alloca <vscale x 64 x i1>, align 1
// CHECK-NEXT: store <vscale x 64 x i1> [[M:%.*]], ptr [[M_ADDR]], align 1
// CHECK-NEXT: store <vscale x 64 x i8> [[VEC:%.*]], ptr [[VEC_ADDR]], align 1
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 64 x i1>, ptr [[M_ADDR]], align 1
// CHECK-NEXT: [[TMP1:%.*]] = load <32 x i8>, ptr @global_bool1, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 8 x i8> @llvm.vector.insert.nxv8i8.v32i8(<vscale x 8 x i8> poison, <32 x i8> [[TMP1]], i64 0)
// CHECK-NEXT: [[TMP2:%.*]] = bitcast <vscale x 8 x i8> [[CAST_SCALABLE]] to <vscale x 64 x i1>
// CHECK-NEXT: [[TMP3:%.*]] = call <vscale x 64 x i1> @llvm.riscv.vmand.nxv64i1.i64(<vscale x 64 x i1> [[TMP0]], <vscale x 64 x i1> [[TMP2]], i64 256)
// CHECK-NEXT: store <vscale x 64 x i1> [[TMP3]], ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 64 x i1>, ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP5:%.*]] = load <vscale x 64 x i8>, ptr [[VEC_ADDR]], align 1
// CHECK-NEXT: [[TMP6:%.*]] = load <256 x i8>, ptr @global_vec_int8m8, align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 64 x i8> @llvm.vector.insert.nxv64i8.v256i8(<vscale x 64 x i8> poison, <256 x i8> [[TMP6]], i64 0)
// CHECK-NEXT: [[TMP7:%.*]] = call <vscale x 64 x i8> @llvm.riscv.vadd.mask.nxv64i8.nxv64i8.i64(<vscale x 64 x i8> poison, <vscale x 64 x i8> [[TMP5]], <vscale x 64 x i8> [[CAST_SCALABLE1]], <vscale x 64 x i1> [[TMP4]], i64 256, i64 3)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <256 x i8> @llvm.vector.extract.v256i8.nxv64i8(<vscale x 64 x i8> [[TMP7]], i64 0)
// CHECK-NEXT: store <256 x i8> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP8:%.*]] = load <256 x i8>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE2:%.*]] = call <vscale x 64 x i8> @llvm.vector.insert.nxv64i8.v256i8(<vscale x 64 x i8> poison, <256 x i8> [[TMP8]], i64 0)
// CHECK-NEXT: ret <vscale x 64 x i8> [[CAST_SCALABLE2]]
//
fixed_int8m8_t test_bool1(vbool1_t m, vint8m8_t vec) {
vbool1_t mask = __riscv_vmand(m, global_bool1, __riscv_v_fixed_vlen);
return __riscv_vadd(mask, vec, global_vec_int8m8, __riscv_v_fixed_vlen);
}
// CHECK-LABEL: @test_bool4(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <64 x i16>, align 8
// CHECK-NEXT: [[M_ADDR:%.*]] = alloca <vscale x 16 x i1>, align 1
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 16 x i16>, align 2
// CHECK-NEXT: [[MASK:%.*]] = alloca <vscale x 16 x i1>, align 1
// CHECK-NEXT: store <vscale x 16 x i1> [[M:%.*]], ptr [[M_ADDR]], align 1
// CHECK-NEXT: store <vscale x 16 x i16> [[VEC:%.*]], ptr [[VEC_ADDR]], align 2
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 16 x i1>, ptr [[M_ADDR]], align 1
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, ptr @global_bool4, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> poison, <8 x i8> [[TMP1]], i64 0)
// CHECK-NEXT: [[TMP2:%.*]] = bitcast <vscale x 2 x i8> [[CAST_SCALABLE]] to <vscale x 16 x i1>
// CHECK-NEXT: [[TMP3:%.*]] = call <vscale x 16 x i1> @llvm.riscv.vmand.nxv16i1.i64(<vscale x 16 x i1> [[TMP0]], <vscale x 16 x i1> [[TMP2]], i64 64)
// CHECK-NEXT: store <vscale x 16 x i1> [[TMP3]], ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 16 x i1>, ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP5:%.*]] = load <vscale x 16 x i16>, ptr [[VEC_ADDR]], align 2
// CHECK-NEXT: [[TMP6:%.*]] = load <64 x i16>, ptr @global_vec_int16m4, align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 16 x i16> @llvm.vector.insert.nxv16i16.v64i16(<vscale x 16 x i16> poison, <64 x i16> [[TMP6]], i64 0)
// CHECK-NEXT: [[TMP7:%.*]] = call <vscale x 16 x i16> @llvm.riscv.vadd.mask.nxv16i16.nxv16i16.i64(<vscale x 16 x i16> poison, <vscale x 16 x i16> [[TMP5]], <vscale x 16 x i16> [[CAST_SCALABLE1]], <vscale x 16 x i1> [[TMP4]], i64 64, i64 3)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <64 x i16> @llvm.vector.extract.v64i16.nxv16i16(<vscale x 16 x i16> [[TMP7]], i64 0)
// CHECK-NEXT: store <64 x i16> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP8:%.*]] = load <64 x i16>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE2:%.*]] = call <vscale x 16 x i16> @llvm.vector.insert.nxv16i16.v64i16(<vscale x 16 x i16> poison, <64 x i16> [[TMP8]], i64 0)
// CHECK-NEXT: ret <vscale x 16 x i16> [[CAST_SCALABLE2]]
//
fixed_int16m4_t test_bool4(vbool4_t m, vint16m4_t vec) {
vbool4_t mask = __riscv_vmand(m, global_bool4, __riscv_v_fixed_vlen/4);
return __riscv_vadd(mask, vec, global_vec_int16m4, __riscv_v_fixed_vlen/4);
}
// CHECK-LABEL: @test_bool32(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i32>, align 8
// CHECK-NEXT: [[M_ADDR:%.*]] = alloca <vscale x 2 x i1>, align 1
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 2 x i32>, align 4
// CHECK-NEXT: [[MASK:%.*]] = alloca <vscale x 2 x i1>, align 1
// CHECK-NEXT: store <vscale x 2 x i1> [[M:%.*]], ptr [[M_ADDR]], align 1
// CHECK-NEXT: store <vscale x 2 x i32> [[VEC:%.*]], ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 2 x i1>, ptr [[M_ADDR]], align 1
// CHECK-NEXT: [[TMP1:%.*]] = load <1 x i8>, ptr @global_bool32, align 1
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 1 x i8> @llvm.vector.insert.nxv1i8.v1i8(<vscale x 1 x i8> poison, <1 x i8> [[TMP1]], i64 0)
// CHECK-NEXT: [[TMP2:%.*]] = bitcast <vscale x 1 x i8> [[CAST_SCALABLE]] to <vscale x 8 x i1>
// CHECK-NEXT: [[TMP3:%.*]] = call <vscale x 2 x i1> @llvm.vector.extract.nxv2i1.nxv8i1(<vscale x 8 x i1> [[TMP2]], i64 0)
// CHECK-NEXT: [[TMP4:%.*]] = call <vscale x 2 x i1> @llvm.riscv.vmand.nxv2i1.i64(<vscale x 2 x i1> [[TMP0]], <vscale x 2 x i1> [[TMP3]], i64 8)
// CHECK-NEXT: store <vscale x 2 x i1> [[TMP4]], ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP5:%.*]] = load <vscale x 2 x i1>, ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP6:%.*]] = load <vscale x 2 x i32>, ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP7:%.*]] = load <8 x i32>, ptr @global_vec, align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> poison, <8 x i32> [[TMP7]], i64 0)
// CHECK-NEXT: [[TMP8:%.*]] = call <vscale x 2 x i32> @llvm.riscv.vadd.mask.nxv2i32.nxv2i32.i64(<vscale x 2 x i32> poison, <vscale x 2 x i32> [[TMP6]], <vscale x 2 x i32> [[CAST_SCALABLE1]], <vscale x 2 x i1> [[TMP5]], i64 8, i64 3)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <8 x i32> @llvm.vector.extract.v8i32.nxv2i32(<vscale x 2 x i32> [[TMP8]], i64 0)
// CHECK-NEXT: store <8 x i32> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP9:%.*]] = load <8 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE2:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> poison, <8 x i32> [[TMP9]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i32> [[CAST_SCALABLE2]]
//
fixed_int32m1_t test_bool32(vbool32_t m, vint32m1_t vec) {
vbool32_t mask = __riscv_vmand(m, global_bool32, __riscv_v_fixed_vlen/32);
return __riscv_vadd(mask, vec, global_vec, __riscv_v_fixed_vlen/32);
}
// CHECK-LABEL: @test_ptr_to_global(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i32>, align 8
// CHECK-NEXT: [[GLOBAL_VEC_PTR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: store ptr @global_vec, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i32>, ptr [[TMP0]], align 8
// CHECK-NEXT: store <8 x i32> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <8 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> poison, <8 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i32> [[CAST_SCALABLE]]
//
fixed_int32m1_t test_ptr_to_global() {
fixed_int32m1_t *global_vec_ptr;
global_vec_ptr = &global_vec;
return *global_vec_ptr;
}
//
// Test casting pointer from fixed-length array to scalable vector.
// CHECK-LABEL: @array_arg(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i32>, align 8
// CHECK-NEXT: [[ARR_ADDR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: store ptr [[ARR:%.*]], ptr [[ARR_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[ARR_ADDR]], align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds <8 x i32>, ptr [[TMP0]], i64 0
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i32>, ptr [[ARRAYIDX]], align 8
// CHECK-NEXT: store <8 x i32> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <8 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> poison, <8 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i32> [[CAST_SCALABLE]]
//
fixed_int32m1_t array_arg(fixed_int32m1_t arr[]) {
return arr[0];
}
// CHECK-LABEL: @address_of_array_idx_bool1(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <32 x i8>, align 8
// CHECK-NEXT: [[ARR:%.*]] = alloca [3 x <32 x i8>], align 8
// CHECK-NEXT: [[PARR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <32 x i8>], ptr [[ARR]], i64 0, i64 0
// CHECK-NEXT: store ptr [[ARRAYIDX]], ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <32 x i8>, ptr [[TMP0]], align 8
// CHECK-NEXT: store <32 x i8> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <32 x i8>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 8 x i8> @llvm.vector.insert.nxv8i8.v32i8(<vscale x 8 x i8> poison, <32 x i8> [[TMP2]], i64 0)
// CHECK-NEXT: [[TMP3:%.*]] = bitcast <vscale x 8 x i8> [[CAST_SCALABLE]] to <vscale x 64 x i1>
// CHECK-NEXT: ret <vscale x 64 x i1> [[TMP3]]
//
fixed_bool1_t address_of_array_idx_bool1() {
fixed_bool1_t arr[3];
fixed_bool1_t *parr;
parr = &arr[0];
return *parr;
}
// CHECK-LABEL: @address_of_array_idx_bool4(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i8>, align 8
// CHECK-NEXT: [[ARR:%.*]] = alloca [3 x <8 x i8>], align 8
// CHECK-NEXT: [[PARR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <8 x i8>], ptr [[ARR]], i64 0, i64 0
// CHECK-NEXT: store ptr [[ARRAYIDX]], ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, ptr [[TMP0]], align 8
// CHECK-NEXT: store <8 x i8> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <8 x i8>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> poison, <8 x i8> [[TMP2]], i64 0)
// CHECK-NEXT: [[TMP3:%.*]] = bitcast <vscale x 2 x i8> [[CAST_SCALABLE]] to <vscale x 16 x i1>
// CHECK-NEXT: ret <vscale x 16 x i1> [[TMP3]]
//
fixed_bool4_t address_of_array_idx_bool4() {
fixed_bool4_t arr[3];
fixed_bool4_t *parr;
parr = &arr[0];
return *parr;
}
// CHECK-LABEL: @address_of_array_idx_bool32(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <1 x i8>, align 1
// CHECK-NEXT: [[ARR:%.*]] = alloca [3 x <1 x i8>], align 1
// CHECK-NEXT: [[PARR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <1 x i8>], ptr [[ARR]], i64 0, i64 0
// CHECK-NEXT: store ptr [[ARRAYIDX]], ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <1 x i8>, ptr [[TMP0]], align 1
// CHECK-NEXT: store <1 x i8> [[TMP1]], ptr [[RETVAL]], align 1
// CHECK-NEXT: [[TMP2:%.*]] = load <1 x i8>, ptr [[RETVAL]], align 1
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 1 x i8> @llvm.vector.insert.nxv1i8.v1i8(<vscale x 1 x i8> poison, <1 x i8> [[TMP2]], i64 0)
// CHECK-NEXT: [[TMP3:%.*]] = bitcast <vscale x 1 x i8> [[CAST_SCALABLE]] to <vscale x 8 x i1>
// CHECK-NEXT: [[TMP4:%.*]] = call <vscale x 2 x i1> @llvm.vector.extract.nxv2i1.nxv8i1(<vscale x 8 x i1> [[TMP3]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i1> [[TMP4]]
//
fixed_bool32_t address_of_array_idx_bool32() {
fixed_bool32_t arr[3];
fixed_bool32_t *parr;
parr = &arr[0];
return *parr;
}
// CHECK-LABEL: @test_cast(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i32>, align 8
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 2 x i32>, align 4
// CHECK-NEXT: store <vscale x 2 x i32> [[VEC:%.*]], ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load <8 x i32>, ptr @global_vec, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> poison, <8 x i32> [[TMP0]], i64 0)
// CHECK-NEXT: [[TMP1:%.*]] = load <vscale x 2 x i32>, ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP2:%.*]] = call <vscale x 2 x i32> @llvm.riscv.vadd.nxv2i32.nxv2i32.i64(<vscale x 2 x i32> poison, <vscale x 2 x i32> [[CAST_SCALABLE]], <vscale x 2 x i32> [[TMP1]], i64 8)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <8 x i32> @llvm.vector.extract.v8i32.nxv2i32(<vscale x 2 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: store <8 x i32> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP3:%.*]] = load <8 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> poison, <8 x i32> [[TMP3]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i32> [[CAST_SCALABLE1]]
//
fixed_int32m1_t test_cast(vint32m1_t vec) {
return __riscv_vadd(global_vec, vec, __riscv_v_fixed_vlen/32);
}
// CHECK-LABEL: @test_ptr_to_global_m2(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 8
// CHECK-NEXT: [[GLOBAL_VEC_PTR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: store ptr @global_vec_m2, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <16 x i32>, ptr [[TMP0]], align 8
// CHECK-NEXT: store <16 x i32> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: ret <vscale x 4 x i32> [[CAST_SCALABLE]]
//
fixed_int32m2_t test_ptr_to_global_m2() {
fixed_int32m2_t *global_vec_ptr;
global_vec_ptr = &global_vec_m2;
return *global_vec_ptr;
}
//
// Test casting pointer from fixed-length array to scalable vector.
// CHECK-LABEL: @array_arg_m2(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 8
// CHECK-NEXT: [[ARR_ADDR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: store ptr [[ARR:%.*]], ptr [[ARR_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[ARR_ADDR]], align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds <16 x i32>, ptr [[TMP0]], i64 0
// CHECK-NEXT: [[TMP1:%.*]] = load <16 x i32>, ptr [[ARRAYIDX]], align 8
// CHECK-NEXT: store <16 x i32> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: ret <vscale x 4 x i32> [[CAST_SCALABLE]]
//
fixed_int32m2_t array_arg_m2(fixed_int32m2_t arr[]) {
return arr[0];
}
// CHECK-LABEL: @test_cast_m2(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 8
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 4 x i32>, align 4
// CHECK-NEXT: store <vscale x 4 x i32> [[VEC:%.*]], ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load <16 x i32>, ptr @global_vec_m2, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP0]], i64 0)
// CHECK-NEXT: [[TMP1:%.*]] = load <vscale x 4 x i32>, ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP2:%.*]] = call <vscale x 4 x i32> @llvm.riscv.vadd.nxv4i32.nxv4i32.i64(<vscale x 4 x i32> poison, <vscale x 4 x i32> [[CAST_SCALABLE]], <vscale x 4 x i32> [[TMP1]], i64 16)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <16 x i32> @llvm.vector.extract.v16i32.nxv4i32(<vscale x 4 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: store <16 x i32> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP3:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> poison, <16 x i32> [[TMP3]], i64 0)
// CHECK-NEXT: ret <vscale x 4 x i32> [[CAST_SCALABLE1]]
//
fixed_int32m2_t test_cast_m2(vint32m2_t vec) {
return __riscv_vadd(global_vec_m2, vec, __riscv_v_fixed_vlen/16);
}
|