aboutsummaryrefslogtreecommitdiff
path: root/clang/test/Analysis/ArrayBound/verbose-tests.c
blob: 84d238ed1a2a4db6b24d3dff9e2aace8ce830859 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// RUN: %clang_analyze_cc1 -Wno-array-bounds -analyzer-output=text        \
// RUN:     -analyzer-checker=core,security.ArrayBound,unix.Malloc,optin.taint -verify %s

// Miscellaneous tests for `security.ArrayBound` where we also verify the
// content of the 'note' diagnostics. This makes the tests sensitive to textual
// changes in the diagnostics, so prefer adding new tests to `brief-tests.c`
// unless they need to verify the correctness of 'note' diagnostics.

int TenElements[10];

void arrayUnderflow(void) {
  TenElements[-3] = 5;
  // expected-warning@-1 {{Out of bound access to memory preceding 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at negative byte offset -12}}
}

int underflowWithDeref(void) {
  int *p = TenElements;
  --p;
  return *p;
  // expected-warning@-1 {{Out of bound access to memory preceding 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at negative byte offset -4}}
}

int rng(void);
int getIndex(void) {
  switch (rng()) {
    case 1: return -152;
    case 2: return -160;
    case 3: return -168;
    default: return -172;
  }
}

void gh86959(void) {
  // Previously code like this produced many almost-identical bug reports that
  // only differed in the offset value. Verify that now we only see one report.

  // expected-note@+1 {{Entering loop body}}
  while (rng())
    TenElements[getIndex()] = 10;
  // expected-warning@-1 {{Out of bound access to memory preceding 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at negative byte offset -688}}
}

int scanf(const char *restrict fmt, ...);

void taintedIndex(void) {
  int index;
  scanf("%d", &index);
  // expected-note@-1 {{Taint originated here}}
  // expected-note@-2 {{Taint propagated to the 2nd argument}}
  TenElements[index] = 5;
  // expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted index}}
  // expected-note@-2 {{Access of 'TenElements' with a tainted index that may be negative or too large}}
}

void taintedIndexNonneg(void) {
  int index;
  scanf("%d", &index);
  // expected-note@-1 {{Taint originated here}}
  // expected-note@-2 {{Taint propagated to the 2nd argument}}

  // expected-note@+2 {{Assuming 'index' is >= 0}}
  // expected-note@+1 {{Taking false branch}}
  if (index < 0)
    return;

  TenElements[index] = 5;
  // expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted index}}
  // expected-note@-2 {{Access of 'TenElements' with a tainted index that may be too large}}
}

void taintedIndexUnsigned(void) {
  unsigned index;
  scanf("%u", &index);
  // expected-note@-1 {{Taint originated here}}
  // expected-note@-2 {{Taint propagated to the 2nd argument}}

  TenElements[index] = 5;
  // expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted index}}
  // expected-note@-2 {{Access of 'TenElements' with a tainted index that may be too large}}
}

int *taintedIndexAfterTheEndPtr(void) {
  // NOTE: Technically speaking, this testcase does not trigger any UB because
  // &TenElements[10] is the after-the-end pointer which is well-defined; but
  // this is a bug-prone situation and far from the idiomatic use of
  // `&TenElements[size]`, so it's better to report an error. This report can
  // be easily silenced by writing TenElements+index instead of
  // &TenElements[index].
  int index;
  scanf("%d", &index);
  // expected-note@-1 {{Taint originated here}}
  // expected-note@-2 {{Taint propagated to the 2nd argument}}
  if (index < 0 || index > 10)
    return TenElements;
  // expected-note@-2 {{Assuming 'index' is >= 0}}
  // expected-note@-3 {{Left side of '||' is false}}
  // expected-note@-4 {{Assuming 'index' is <= 10}}
  // expected-note@-5 {{Taking false branch}}
  return &TenElements[index];
  // expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted index}}
  // expected-note@-2 {{Access of 'TenElements' with a tainted index that may be too large}}
}

void taintedOffset(void) {
  int index;
  scanf("%d", &index);
  // expected-note@-1 {{Taint originated here}}
  // expected-note@-2 {{Taint propagated to the 2nd argument}}
  int *p = TenElements + index;
  p[0] = 5;
  // expected-warning@-1 {{Potential out of bound access to 'TenElements' with tainted offset}}
  // expected-note@-2 {{Access of 'TenElements' with a tainted offset that may be negative or too large}}
}

void arrayOverflow(void) {
  TenElements[12] = 5;
  // expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at index 12, while it holds only 10 'int' elements}}
}

void flippedOverflow(void) {
  12[TenElements] = 5;
  // expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at index 12, while it holds only 10 'int' elements}}
}

int *afterTheEndPtr(void) {
  // This is an unusual but standard-compliant way of writing (TenElements + 10).
  return &TenElements[10]; // no-warning
}

int useAfterTheEndPtr(void) {
  // ... but dereferencing the after-the-end pointer is still invalid.
  return *afterTheEndPtr();
  // expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at index 10, while it holds only 10 'int' elements}}
}

int *afterAfterTheEndPtr(void) {
  // This is UB, it's invalid to form an after-after-the-end pointer.
  return &TenElements[11];
  // expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at index 11, while it holds only 10 'int' elements}}
}

int *potentialAfterTheEndPtr(int idx) {
  if (idx < 10) { /* ...do something... */ }
  // expected-note@-1 {{Assuming 'idx' is >= 10}}
  // expected-note@-2 {{Taking false branch}}
  return &TenElements[idx];
  // expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at an overflowing index, while it holds only 10 'int' elements}}
  // NOTE: On the idx >= 10 branch the normal "optimistic" behavior would've
  // been continuing with the assumption that idx == 10 and the return value is
  // a legitimate after-the-end pointer. The checker deviates from this by
  // reporting an error because this situation is very suspicious and far from
  // the idiomatic `&TenElements[size]` expressions. If the report is FP, the
  // developer can easily silence it by writing TenElements+idx instead of
  // &TenElements[idx].
}

int overflowOrUnderflow(int arg) {
  // expected-note@+2 {{Assuming 'arg' is < 0}}
  // expected-note@+1 {{Taking false branch}}
  if (arg >= 0)
    return 0;

  return TenElements[arg - 1];
  // expected-warning@-1 {{Out of bound access to memory around 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at a negative or overflowing index, while it holds only 10 'int' elements}}
}

char TwoElements[2] = {11, 22};
char overflowOrUnderflowConcrete(int arg) {
  // expected-note@#cond {{Assuming 'arg' is < 3}}
  // expected-note@#cond {{Left side of '||' is false}}
  // expected-note@#cond {{Assuming 'arg' is not equal to 0}}
  // expected-note@#cond {{Left side of '||' is false}}
  // expected-note@#cond {{Assuming 'arg' is not equal to 1}}
  // expected-note@#cond {{Taking false branch}}
  if (arg >= 3 || arg == 0 || arg == 1) // #cond
    return 0;

  return TwoElements[arg];
  // expected-warning@-1 {{Out of bound access to memory around 'TwoElements'}}
  // expected-note@-2 {{Access of 'TwoElements' at a negative or overflowing index, while it holds only 2 'char' elements}}
}

int scalar;
int scalarOverflow(void) {
  return (&scalar)[1];
  // expected-warning@-1 {{Out of bound access to memory after the end of 'scalar'}}
  // expected-note@-2 {{Access of 'scalar' at index 1, while it holds only a single 'int' element}}
}

int oneElementArray[1];
int oneElementArrayOverflow(void) {
  return oneElementArray[1];
  // expected-warning@-1 {{Out of bound access to memory after the end of 'oneElementArray'}}
  // expected-note@-2 {{Access of 'oneElementArray' at index 1, while it holds only a single 'int' element}}
}

struct vec {
  int len;
  double elems[64];
} v;

double arrayInStruct(void) {
  return v.elems[64];
  // expected-warning@-1 {{Out of bound access to memory after the end of 'v.elems'}}
  // expected-note@-2 {{Access of 'v.elems' at index 64, while it holds only 64 'double' elements}}
}

double arrayInStructPtr(struct vec *pv) {
  return pv->elems[64];
  // expected-warning@-1 {{Out of bound access to memory after the end of the field 'elems'}}
  // expected-note@-2 {{Access of the field 'elems' at index 64, while it holds only 64 'double' elements}}
}

struct item {
  int a, b;
} itemArray[20] = {0};

int arrayOfStructs(void) {
  return itemArray[35].a;
  // expected-warning@-1 {{Out of bound access to memory after the end of 'itemArray'}}
  // expected-note@-2 {{Access of 'itemArray' at index 35, while it holds only 20 'struct item' elements}}
}

int arrayOfStructsArrow(void) {
  return (itemArray + 35)->b;
  // expected-warning@-1 {{Out of bound access to memory after the end of 'itemArray'}}
  // expected-note@-2 {{Access of 'itemArray' at index 35, while it holds only 20 'struct item' elements}}
}

char convertedScalar(long long var) {
  char *p = ((char*)&var);
  (void) p[3]; // no-warning
  return p[13];
  // expected-warning@-1 {{Out of bound access to memory after the end of 'var'}}
  // expected-note@-2 {{Access of 'var' at index 13, while it holds only 8 'char' elements}}
}

short convertedArray(void) {
  (void) ((short*)TenElements)[17]; // no-warning
  return ((short*)TenElements)[47];
  // expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at index 47, while it holds only 20 'short' elements}}
}

struct two_bytes {
  char lo, hi;
};

struct two_bytes convertedArray2(void) {
  // We report this with byte offsets because the offset is not divisible by the element size.
  struct two_bytes a = {0, 0};
  char *p = (char*)&a;
  return *((struct two_bytes*)(p + 7));
  // expected-warning@-1 {{Out of bound access to memory after the end of 'a'}}
  // expected-note@-2 {{Access of 'a' at byte offset 7, while it holds only 2 bytes}}
}

int intFromString(void) {
  // We report this with byte offsets because the extent is not divisible by the element size.
  return ((const int*)"this is a string of 33 characters")[20];
  // expected-warning@-1 {{Out of bound access to memory after the end of the string literal}}
  // expected-note@-2 {{Access of the string literal at byte offset 80, while it holds only 34 bytes}}
}

int intFromStringDivisible(void) {
  // However, this is reported with indices/elements, because the extent
  // (of the string that consists of 'a', 'b', 'c' and '\0') happens to be a
  // multiple of 4 bytes (= sizeof(int)).
  return ((const int*)"abc")[20];
  // expected-warning@-1 {{Out of bound access to memory after the end of the string literal}}
  // expected-note@-2 {{Access of the string literal at index 20, while it holds only a single 'int' element}}
}

typedef __typeof(sizeof(int)) size_t;
void *malloc(size_t size);
void free(void *mem);

int *mallocRegion(void) {
  int *mem = (int*)malloc(2*sizeof(int));

  mem[1] = 48; // no-warning

  mem[3] = -2;
  // expected-warning@-1 {{Out of bound access to memory after the end of the heap area}}
  // expected-note@-2 {{Access of the heap area at index 3, while it holds only 2 'int' elements}}
  return mem;
}

typedef struct { size_t len; int data[0]; } vec_t;

void mallocFlexibleArray(void) {
  vec_t *v = malloc(sizeof(vec_t) + 10 * sizeof(int));
  v->len = 10;
  v->data[1] = 5; // no-warning
  v->data[11] = 99;
  // TODO: Here ideally we would expect
  //     {{Out of bound access to memory after the end of the heap area}}
  //     {{Access of the heap area at index 11, while it holds only 10 'int' elements}}
  // but the analyzer cannot (yet) deduce the size of the flexible array member
  // from the size of the whole allocated area.
  free(v);
}

int *custom_calloc(size_t a, size_t b) {
  size_t res;

  return __builtin_mul_overflow(a, b, &res) ? 0 : malloc(res);
}

int *mallocMulOverflow(void) {
  int *mem = (int*)custom_calloc(10, sizeof(int));

  mem[20] = 10;
  // expected-warning@-1 {{Out of bound access to memory after the end of the heap area}}
  // expected-note@-2 {{Access of the heap area at index 20, while it holds only 10 'int' elements}}
  return mem;
}

int *mallocRegionDeref(void) {
  int *mem = (int*)malloc(2*sizeof(int));

  *(mem + 3) = -2;
  // expected-warning@-1 {{Out of bound access to memory after the end of the heap area}}
  // expected-note@-2 {{Access of the heap area at index 3, while it holds only 2 'int' elements}}
  return mem;
}

void *alloca(size_t size);

int allocaRegion(void) {
  int *mem = (int*)alloca(2*sizeof(int));
  mem[3] = -2;
  // expected-warning@-1 {{Out of bound access to memory after the end of the memory returned by 'alloca'}}
  // expected-note@-2 {{Access of the memory returned by 'alloca' at index 3, while it holds only 2 'int' elements}}
  return *mem;
}

int *symbolicExtent(int arg) {
  // expected-note@+2 {{Assuming 'arg' is < 5}}
  // expected-note@+1 {{Taking false branch}}
  if (arg >= 5)
    return 0;
  int *mem = (int*)malloc(arg);

  // TODO: without the following reference to 'arg', the analyzer would discard
  // the range information about (the symbolic value of) 'arg'. This is
  // incorrect because while the variable itself is inaccessible, it becomes
  // the symbolic extent of 'mem', so we still want to reason about its
  // potential values.
  (void)arg;

  mem[8] = -2;
  // expected-warning@-1 {{Out of bound access to memory after the end of the heap area}}
  // expected-note@-2 {{Access of 'int' element in the heap area at index 8}}
  return mem;
}

int *symbolicExtentDiscardedRangeInfo(int arg) {
  // This is a copy of the case 'symbolicExtent' without the '(void)arg' hack.
  // TODO: if the analyzer can detect the out-of-bounds access within this
  // testcase, then remove this and the `(void)arg` hack from `symbolicExtent`.
  if (arg >= 5)
    return 0;
  int *mem = (int*)malloc(arg);
  mem[8] = -2;
  return mem;
}

void symbolicIndex(int arg) {
  // expected-note@+2 {{Assuming 'arg' is >= 12}}
  // expected-note@+1 {{Taking true branch}}
  if (arg >= 12)
    TenElements[arg] = -2;
  // expected-warning@-1 {{Out of bound access to memory after the end of 'TenElements'}}
  // expected-note@-2 {{Access of 'TenElements' at an overflowing index, while it holds only 10 'int' elements}}
}

int *nothingIsCertain(int x, int y) {
  if (x >= 2)
    return 0;
  int *mem = (int*)malloc(x);

  if (y >= 8)
    mem[y] = -2;
  // FIXME: this should produce
  //   {{Out of bound access to memory after the end of the heap area}}
  //   {{Access of 'int' element in the heap area at an overflowing index}}
  // but apparently the analyzer isn't smart enough to deduce this.

  // Keep constraints alive. (Without this, the overeager garbage collection of
  // constraints would _also_ prevent the intended behavior in this testcase.)
  (void)x;

  return mem;
}