aboutsummaryrefslogtreecommitdiff
path: root/clang/test/AST/ByteCode/cxx11.cpp
blob: 378702f9b3620b87bf618b65ac7c3906da68208d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// RUN: %clang_cc1 -triple x86_64-linux -verify=both,expected -std=c++11 %s -fexperimental-new-constant-interpreter
// RUN: %clang_cc1 -triple x86_64-linux -verify=both,ref      -std=c++11 %s

namespace IntOrEnum {
  const int k = 0;
  const int &p = k;
  template<int n> struct S {};
  S<p> s;
}

const int cval = 2;
template <int> struct C{};
template struct C<cval>;


/// FIXME: This example does not get properly diagnosed in the new interpreter.
extern const int recurse1;
const int recurse2 = recurse1; // both-note {{here}}
const int recurse1 = 1;
int array1[recurse1];
int array2[recurse2]; // both-warning {{variable length arrays in C++}} \
                      // both-note {{initializer of 'recurse2' is not a constant expression}} \
                      // expected-error {{variable length array declaration not allowed at file scope}} \
                      // ref-warning {{variable length array folded to constant array as an extension}}

constexpr int b = b; // both-error {{must be initialized by a constant expression}} \
                     // both-note {{read of object outside its lifetime is not allowed in a constant expression}}


[[clang::require_constant_initialization]] int c = c; // both-error {{variable does not have a constant initializer}} \
                                                      // both-note {{attribute here}} \
                                                      // both-note {{read of non-const variable}} \
                                                      // both-note {{declared here}}


struct S {
  int m;
};
constexpr S s = { 5 };
constexpr const int *p = &s.m + 1;

constexpr const int *np2 = &(*(int(*)[4])nullptr)[0]; // both-error {{constexpr variable 'np2' must be initialized by a constant expression}} \
                                                      // both-note  {{dereferencing a null pointer is not allowed in a constant expression}}

constexpr int preDec(int x) { // both-error {{never produces a constant expression}}
  return --x;                 // both-note {{subexpression}}
}

constexpr int postDec(int x) { // both-error {{never produces a constant expression}}
  return x--;                  // both-note {{subexpression}}
}

constexpr int preInc(int x) { // both-error {{never produces a constant expression}}
  return ++x;                  // both-note {{subexpression}}
}

constexpr int postInc(int x) { // both-error {{never produces a constant expression}}
  return x++;                  // both-note {{subexpression}}
}


namespace ReferenceToConst {
  template<int n> struct S; // both-note 1{{here}}
  struct LiteralType {
    constexpr LiteralType(int n) : n(n) {}
    int n;
  };
  template<int n> struct T {
    T() {
      static const int ki = 42;
      const int &i2 = ki;
      typename S<i2>::T check5; // both-error {{undefined template}}
    }
  };
}



namespace GH50055 {
// Enums without fixed underlying type
enum E1 {e11=-4, e12=4};
enum E2 {e21=0, e22=4};
enum E3 {e31=-4, e32=1024};
enum E4 {e41=0};
// Empty but as-if it had a single enumerator with value 0
enum EEmpty {};

// Enum with fixed underlying type because the underlying type is explicitly specified
enum EFixed : int {efixed1=-4, efixed2=4};
// Enum with fixed underlying type because it is scoped
enum class EScoped {escoped1=-4, escoped2=4};

enum EMaxInt {emaxint1=-1, emaxint2=__INT_MAX__};

enum NumberType {};

E2 testDefaultArgForParam(E2 e2Param = (E2)-1) { // ok, not a constant expression context
  E2 e2LocalInit = e2Param; // ok, not a constant expression context
  return e2LocalInit;
}

// #include <enum-constexpr-conversion-system-header.h>

void testValueInRangeOfEnumerationValues() {
  constexpr E1 x1 = static_cast<E1>(-8);
  constexpr E1 x2 = static_cast<E1>(8);
  // both-error@-1 {{constexpr variable 'x2' must be initialized by a constant expression}}
  // both-note@-2 {{integer value 8 is outside the valid range of values [-8, 7] for the enumeration type 'E1'}}
  E1 x2b = static_cast<E1>(8); // ok, not a constant expression context

  constexpr E2 x3 = static_cast<E2>(-8);
  // both-error@-1 {{constexpr variable 'x3' must be initialized by a constant expression}}
  // both-note@-2 {{integer value -8 is outside the valid range of values [0, 7] for the enumeration type 'E2'}}
  constexpr E2 x4 = static_cast<E2>(0);
  constexpr E2 x5 = static_cast<E2>(8);
  // both-error@-1 {{constexpr variable 'x5' must be initialized by a constant expression}}
  // both-note@-2 {{integer value 8 is outside the valid range of values [0, 7] for the enumeration type 'E2'}}

  constexpr E3 x6 = static_cast<E3>(-2048);
  constexpr E3 x7 = static_cast<E3>(-8);
  constexpr E3 x8 = static_cast<E3>(0);
  constexpr E3 x9 = static_cast<E3>(8);
  constexpr E3 x10 = static_cast<E3>(2048);
  // both-error@-1 {{constexpr variable 'x10' must be initialized by a constant expression}}
  // both-note@-2 {{integer value 2048 is outside the valid range of values [-2048, 2047] for the enumeration type 'E3'}}

  constexpr E4 x11 = static_cast<E4>(0);
  constexpr E4 x12 = static_cast<E4>(1);
  constexpr E4 x13 = static_cast<E4>(2);
  // both-error@-1 {{constexpr variable 'x13' must be initialized by a constant expression}}
  // both-note@-2 {{integer value 2 is outside the valid range of values [0, 1] for the enumeration type 'E4'}}

  constexpr EEmpty x14 = static_cast<EEmpty>(0);
  constexpr EEmpty x15 = static_cast<EEmpty>(1);
  constexpr EEmpty x16 = static_cast<EEmpty>(2);
  // both-error@-1 {{constexpr variable 'x16' must be initialized by a constant expression}}
  // both-note@-2 {{integer value 2 is outside the valid range of values [0, 1] for the enumeration type 'EEmpty'}}

  constexpr EFixed x17 = static_cast<EFixed>(100);
  constexpr EScoped x18 = static_cast<EScoped>(100);

  constexpr EMaxInt x19 = static_cast<EMaxInt>(__INT_MAX__-1);
  constexpr EMaxInt x20 = static_cast<EMaxInt>((long)__INT_MAX__+1);
  // both-error@-1 {{constexpr variable 'x20' must be initialized by a constant expression}}
  // both-note@-2 {{integer value 2147483648 is outside the valid range of values [-2147483648, 2147483647] for the enumeration type 'EMaxInt'}}

  const NumberType neg_one = (NumberType) ((NumberType) 0 - (NumberType) 1); // ok, not a constant expression context
}

template<class T, unsigned size> struct Bitfield {
  static constexpr T max = static_cast<T>((1 << size) - 1);
  // both-error@-1 {{constexpr variable 'max' must be initialized by a constant expression}}
  // both-note@-2 {{integer value 15 is outside the valid range of values [0, 7] for the enumeration type 'E2'}}
};

void testValueInRangeOfEnumerationValuesViaTemplate() {
  Bitfield<E2, 3> good;
  Bitfield<E2, 4> bad; // both-note {{in instantiation}}
}

enum SortOrder {
  AscendingOrder,
  DescendingOrder
};

class A {
  static void f(SortOrder order);
};

void A::f(SortOrder order) {
  if (order == SortOrder(-1)) // ok, not a constant expression context
    return;
}
}

namespace FinalLtorDiags {
  template<int*> struct A {}; // both-note {{template parameter is declared here}}
  int k;
  int *q = &k; // both-note {{declared here}}
  A<q> c; // both-error {{non-type template argument of type 'int *' is not a constant expression}} \
          // both-note {{read of non-constexpr variable 'q' is not allowed in a constant expression}}
}

void lambdas() {
  int d;
  int a9[1] = {[d = 0] = 1}; // both-error {{not an integral constant expression}}
}


namespace InitLinkToRVO {
  struct A {
    int y = 3;
    int z = 1 + y;
  };

  constexpr A make() { return A {}; }
  static_assert(make().z == 4, "");
}

namespace DynamicCast {
  struct S { int x, y; } s;
  constexpr S* sptr = &s;
  struct Str {
    int b : reinterpret_cast<S*>(sptr) == reinterpret_cast<S*>(sptr);
    int g : (S*)(void*)(sptr) == sptr;
  };
}

namespace GlobalInitializer {
  extern int &g; // both-note {{here}}
  struct S {
    int G : g; // both-error {{constant expression}} \
               // both-note {{initializer of 'g' is unknown}}
  };
}

namespace ExternPointer {
  struct S { int a; };
  extern const S pu;
  constexpr const int *pua = &pu.a; // Ok.
}

namespace PseudoDtor {
  typedef int I;
  constexpr int f(int a = 1) { // both-error {{never produces a constant expression}} \
                               // ref-note {{destroying object 'a' whose lifetime has already ended}}
    return (
        a.~I(), // both-note {{pseudo-destructor call is not permitted}} \
                // expected-note {{pseudo-destructor call is not permitted}}
        0);
  }
  static_assert(f() == 0, ""); // both-error {{constant expression}} \
                               // expected-note {{in call to}}
}

namespace IntToPtrCast {
  typedef __INTPTR_TYPE__ intptr_t;

  constexpr intptr_t f(intptr_t x) {
    return (((x) >> 21) * 8);
  }

  extern "C" int foo;
  constexpr intptr_t i = f((intptr_t)&foo - 10); // both-error{{constexpr variable 'i' must be initialized by a constant expression}} \
                                                 // both-note{{reinterpret_cast}}
}

namespace Volatile {
  constexpr int f(volatile int &&r) {
    return r; // both-note {{read of volatile-qualified type 'volatile int'}}
  }
  struct S {
    int j : f(0); // both-error {{constant expression}} \
                  // both-note {{in call to 'f(0)'}}
  };
}

namespace ZeroSizeCmp {
  extern void (*start[])();
  extern void (*end[])();
  static_assert(&start != &end, ""); // both-error {{constant expression}} \
                                     // both-note {{comparison of pointers '&start' and '&end' to unrelated zero-sized objects}}
}

namespace OverlappingStrings {
  static_assert(+"foo" != +"bar", "");
  static_assert(&"xfoo"[1] != &"yfoo"[1], "");
  static_assert(+"foot" != +"foo", "");
  static_assert(+"foo\0bar" != +"foo\0baz", "");


#define fold(x) (__builtin_constant_p(x) ? (x) : (x))
  static_assert(fold((const char*)u"A" != (const char*)"\0A\0x"), "");
  static_assert(fold((const char*)u"A" != (const char*)"A\0\0x"), "");
  static_assert(fold((const char*)u"AAA" != (const char*)"AAA\0\0x"), "");

  constexpr const char *string = "hello";
  constexpr const char *also_string = string;
  static_assert(string == string, "");
  static_assert(string == also_string, "");


  // These strings may overlap, and so the result of the comparison is unknown.
  constexpr bool may_overlap_1 = +"foo" == +"foo"; // both-error {{}} both-note {{addresses of potentially overlapping literals}}
  constexpr bool may_overlap_2 = +"foo" == +"foo\0bar"; // both-error {{}} both-note {{addresses of potentially overlapping literals}}
  constexpr bool may_overlap_3 = +"foo" == &"bar\0foo"[4]; // both-error {{}} both-note {{addresses of potentially overlapping literals}}
  constexpr bool may_overlap_4 = &"xfoo"[1] == &"xfoo"[1]; // both-error {{}} both-note {{addresses of potentially overlapping literals}}



}