1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
|
// RUN: %clang_cc1 -fexperimental-new-constant-interpreter -verify=expected,both %s
// RUN: %clang_cc1 -fexperimental-new-constant-interpreter -verify=expected,both -std=c++20 %s
// RUN: %clang_cc1 -verify=ref,both %s
// RUN: %clang_cc1 -verify=ref,both -std=c++20 %s
constexpr int m = 3;
constexpr const int *foo[][5] = {
{nullptr, &m, nullptr, nullptr, nullptr},
{nullptr, nullptr, &m, nullptr, nullptr},
{nullptr, nullptr, nullptr, &m, nullptr},
};
static_assert(foo[0][0] == nullptr, "");
static_assert(foo[0][1] == &m, "");
static_assert(foo[0][2] == nullptr, "");
static_assert(foo[0][3] == nullptr, "");
static_assert(foo[0][4] == nullptr, "");
static_assert(foo[1][0] == nullptr, "");
static_assert(foo[1][1] == nullptr, "");
static_assert(foo[1][2] == &m, "");
static_assert(foo[1][3] == nullptr, "");
static_assert(foo[1][4] == nullptr, "");
static_assert(foo[2][0] == nullptr, "");
static_assert(foo[2][1] == nullptr, "");
static_assert(foo[2][2] == nullptr, "");
static_assert(foo[2][3] == &m, "");
static_assert(foo[2][4] == nullptr, "");
constexpr int afterEnd[] = {1,2,3};
static_assert(&afterEnd[3] == afterEnd + 3, "");
constexpr int ZeroSizeArray[] = {};
constexpr int SomeInt[] = {1};
constexpr int getSomeInt() { return *SomeInt; }
static_assert(getSomeInt() == 1, "");
/// A init list for a primitive value.
constexpr int f{5};
static_assert(f == 5, "");
constexpr int getElement(int i) {
int values[] = {1, 4, 9, 16, 25, 36};
return values[i];
}
static_assert(getElement(1) == 4, "");
static_assert(getElement(5) == 36, "");
constexpr int data[] = {5, 4, 3, 2, 1};
constexpr int getElement(const int *Arr, int index) {
return *(Arr + index);
}
constexpr int derefPtr(const int *d) {
return *d;
}
static_assert(derefPtr(data) == 5, "");
/// Make sure we can refer to the one-past-the-end element
/// and then return back to the end of the array.
static_assert((&data[5])[-1] == 1, "");
constexpr int storePtr() {
int b[] = {1,2,3,4};
int *c = b;
*c = 4;
return *c;
}
static_assert(storePtr() == 4, "");
static_assert(getElement(data, 1) == 4, "");
static_assert(getElement(data, 4) == 1, "");
constexpr int getElementFromEnd(const int *Arr, int size, int index) {
return *(Arr + size - index - 1);
}
static_assert(getElementFromEnd(data, 5, 0) == 1, "");
static_assert(getElementFromEnd(data, 5, 4) == 5, "");
constexpr int getFirstElem(const int *a) {
return a[0]; // both-note {{read of dereferenced null pointer}}
}
static_assert(getFirstElem(nullptr) == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr static int arr[2] = {1,2};
constexpr static int arr2[2] = {3,4};
constexpr int *p1 = nullptr;
constexpr int *p2 = p1 + 1; // both-error {{must be initialized by a constant expression}} \
// both-note {{cannot perform pointer arithmetic on null pointer}}
constexpr int *p3 = p1 + 0;
constexpr int *p4 = p1 - 0;
constexpr int *p5 = 0 + p1;
constexpr int *p6 = 0 - p1; // both-error {{invalid operands to binary expression}}
constexpr int const * ap1 = &arr[0];
constexpr int const * ap2 = ap1 + 3; // both-error {{must be initialized by a constant expression}} \
// both-note {{cannot refer to element 3 of array of 2}}
constexpr auto ap3 = arr - 1; // both-error {{must be initialized by a constant expression}} \
// both-note {{cannot refer to element -1}}
constexpr int k1 = &arr[1] - &arr[0];
static_assert(k1 == 1, "");
static_assert((&arr[0] - &arr[1]) == -1, "");
constexpr int k2 = &arr2[1] - &arr[0]; // both-error {{must be initialized by a constant expression}} \
// both-note {{arithmetic involving unrelated objects}}
static_assert((arr + 0) == arr, "");
static_assert(&arr[0] == arr, "");
static_assert(*(&arr[0]) == 1, "");
static_assert(*(&arr[1]) == 2, "");
constexpr const int *OOB = (arr + 3) - 3; // both-error {{must be initialized by a constant expression}} \
// both-note {{cannot refer to element 3 of array of 2 elements}}
template<typename T>
constexpr T getElementOf(T* array, int i) {
return array[i];
}
static_assert(getElementOf(foo[0], 1) == &m, "");
template <typename T, int N>
constexpr T& getElementOfArray(T (&array)[N], int I) {
return array[I];
}
static_assert(getElementOfArray(foo[2], 3) == &m, "");
static_assert(data[0] == 4, ""); // both-error{{failed}} \
// both-note{{5 == 4}}
constexpr int dynamic[] = {
f, 3, 2 + 5, data[3], *getElementOf(foo[2], 3)
};
static_assert(dynamic[0] == f, "");
static_assert(dynamic[3] == 2, "");
constexpr int dependent[4] = {
0, 1, dependent[0], dependent[1]
};
static_assert(dependent[2] == dependent[0], "");
static_assert(dependent[3] == dependent[1], "");
union { char x[]; } r = {0};
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc99-extensions"
#pragma clang diagnostic ignored "-Winitializer-overrides"
constexpr int DI[] = {
[0] = 10,
[1] = 20,
30,
40,
[1] = 50
};
static_assert(DI[0] == 10, "");
static_assert(DI[1] == 50, "");
static_assert(DI[2] == 30, "");
static_assert(DI[3] == 40, "");
constexpr int addThreeElements(const int v[3]) {
return v[0] + v[1] + v[2];
}
constexpr int is[] = {10, 20, 30 };
static_assert(addThreeElements(is) == 60, "");
struct fred {
char s [6];
int n;
};
struct fred y [] = { [0] = { .s[0] = 'q' } };
#pragma clang diagnostic pop
namespace indices {
constexpr int first[] = {1};
constexpr int firstValue = first[2]; // both-error {{must be initialized by a constant expression}} \
// both-note {{cannot refer to element 2 of array of 1}}
constexpr int second[10] = {17};
constexpr int secondValue = second[10];// both-error {{must be initialized by a constant expression}} \
// both-note {{read of dereferenced one-past-the-end pointer}} \
constexpr int negative = second[-2]; // both-error {{must be initialized by a constant expression}} \
// both-note {{cannot refer to element -2 of array of 10}}
};
namespace DefaultInit {
template <typename T, unsigned N>
struct B {
T a[N];
};
int f() {
constexpr B<int,10> arr = {};
constexpr int x = arr.a[0];
}
};
class A {
public:
int a;
constexpr A(int m = 2) : a(10 + m) {}
};
class AU {
public:
int a;
constexpr AU() : a(5 / 0) {} // both-warning {{division by zero is undefined}} \
// both-note 2{{division by zero}} \
// both-error {{never produces a constant expression}}
};
class B {
public:
A a[2];
constexpr B() {}
};
constexpr B b;
static_assert(b.a[0].a == 12, "");
static_assert(b.a[1].a == 12, "");
class BU {
public:
AU a[2];
constexpr BU() {} // both-note {{in call to 'AU()'}}
};
constexpr BU bu; // both-error {{must be initialized by a constant expression}} \
// both-note {{in call to 'BU()'}}
namespace IncDec {
constexpr int getNextElem(const int *A, int I) {
const int *B = (A + I);
++B;
return *B;
}
constexpr int E[] = {1,2,3,4};
static_assert(getNextElem(E, 1) == 3, "");
constexpr int getFirst() {
const int *e = E;
return *(e++);
}
static_assert(getFirst() == 1, "");
constexpr int getFirst2() {
const int *e = E;
e++;
return *e;
}
static_assert(getFirst2() == 2, "");
constexpr int getSecond() {
const int *e = E;
return *(++e);
}
static_assert(getSecond() == 2, "");
constexpr int getSecond2() {
const int *e = E;
++e;
return *e;
}
static_assert(getSecond2() == 2, "");
constexpr int getLast() {
const int *e = E + 3;
return *(e--);
}
static_assert(getLast() == 4, "");
constexpr int getLast2() {
const int *e = E + 3;
e--;
return *e;
}
static_assert(getLast2() == 3, "");
constexpr int getSecondToLast() {
const int *e = E + 3;
return *(--e);
}
static_assert(getSecondToLast() == 3, "");
constexpr int getSecondToLast2() {
const int *e = E + 3;
--e;
return *e;
}
static_assert(getSecondToLast2() == 3, "");
constexpr int bad1() { // both-error {{never produces a constant expression}}
const int *e = E + 3;
e++; // This is fine because it's a one-past-the-end pointer
return *e; // both-note 2{{read of dereferenced one-past-the-end pointer}}
}
static_assert(bad1() == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int bad2() { // both-error {{never produces a constant expression}}
const int *e = E + 4;
e++; // both-note 2{{cannot refer to element 5 of array of 4 elements}}
return *e; // This is UB as well
}
static_assert(bad2() == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int bad3() { // both-error {{never produces a constant expression}}
const int *e = E;
e--; // both-note 2{{cannot refer to element -1 of array of 4 elements}}
return *e; // This is UB as well
}
static_assert(bad3() == 0, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
constexpr int nullptr1(bool Pre) {
int *a = nullptr;
if (Pre)
++a; // both-note {{arithmetic on null pointer}}
else
a++; // both-note {{arithmetic on null pointer}}
return 1;
}
static_assert(nullptr1(true) == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
static_assert(nullptr1(false) == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
};
namespace ZeroInit {
struct A {
int *p[2];
};
constexpr A a = {};
static_assert(a.p[0] == nullptr, "");
static_assert(a.p[1] == nullptr, "");
struct B {
double f[2];
};
constexpr B b = {};
static_assert(b.f[0] == 0.0, "");
static_assert(b.f[1] == 0.0, "");
}
namespace ArrayInitLoop {
struct X {
int arr[3];
};
constexpr X f(int &r) {
return {++r, ++r, ++r};
}
constexpr int g() {
int n = 0;
auto [a, b, c] = f(n).arr;
return a + b + c;
}
static_assert(g() == 6, "");
}
namespace StringZeroFill {
struct A {
char c[6];
};
constexpr A a = { "abc" };
static_assert(a.c[0] == 'a', "");
static_assert(a.c[1] == 'b', "");
static_assert(a.c[2] == 'c', "");
static_assert(a.c[3] == '\0', "");
static_assert(a.c[4] == '\0', "");
static_assert(a.c[5] == '\0', "");
constexpr char b[6] = "foo";
static_assert(b[0] == 'f', "");
static_assert(b[1] == 'o', "");
static_assert(b[2] == 'o', "");
static_assert(b[3] == '\0', "");
static_assert(b[4] == '\0', "");
static_assert(b[5] == '\0', "");
}
namespace NoInitMapLeak {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdivision-by-zero"
#pragma clang diagnostic ignored "-Wc++20-extensions"
constexpr int testLeak() { // both-error {{never produces a constant expression}}
int a[2];
a[0] = 1;
// interrupts interpretation.
(void)(1 / 0); // both-note 2{{division by zero}}
return 1;
}
#pragma clang diagnostic pop
static_assert(testLeak() == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to 'testLeak()'}}
constexpr int a[] = {1,2,3,4/0,5}; // both-error {{must be initialized by a constant expression}} \
// both-note {{division by zero}} \
// ref-note {{declared here}}
/// FIXME: This should fail in the new interpreter as well.
constexpr int b = a[0]; // ref-error {{must be initialized by a constant expression}} \
// ref-note {{is not a constant expression}} \
// ref-note {{declared here}}
static_assert(b == 1, ""); // ref-error {{not an integral constant expression}} \
// ref-note {{not a constant expression}}
constexpr int f() { // both-error {{never produces a constant expression}}
int a[] = {19,2,3/0,4}; // both-note 2{{division by zero}} \
// both-warning {{is undefined}}
return 1;
}
static_assert(f() == 1, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
}
namespace Incomplete {
struct Foo {
char c;
int a[];
};
constexpr Foo F{};
constexpr const int *A = F.a; // both-error {{must be initialized by a constant expression}} \
// both-note {{array-to-pointer decay of array member without known bound}}
constexpr const int *B = F.a + 1; // both-error {{must be initialized by a constant expression}} \
// both-note {{array-to-pointer decay of array member without known bound}}
constexpr int C = *F.a; // both-error {{must be initialized by a constant expression}} \
// both-note {{array-to-pointer decay of array member without known bound}}
struct X {
int a;
int b[];
};
extern X x;
constexpr int *xb = x.b; // both-error {{must be initialized by a constant expression}} \
// both-note {{array-to-pointer decay of array member without known bound}}
/// These are from test/SemaCXX/constant-expression-cxx11.cpp
extern int arr[];
constexpr int *c = &arr[1]; // both-error {{must be initialized by a constant expression}} \
// both-note {{indexing of array without known bound}}
constexpr int *d = &arr[1]; // both-error {{must be initialized by a constant expression}} \
// both-note {{indexing of array without known bound}}
constexpr int *e = arr + 1; // both-error {{must be initialized by a constant expression}} \
// both-note {{indexing of array without known bound}}
}
namespace GH69115 {
/// This used to crash because we were trying to emit destructors for the
/// array.
constexpr int foo() {
int arr[2][2] = {1, 2, 3, 4};
return 0;
}
static_assert(foo() == 0, "");
/// Test that we still emit the destructors for multi-dimensional
/// composite arrays.
#if __cplusplus >= 202002L
constexpr void assert(bool C) {
if (C)
return;
// Invalid in constexpr.
(void)(1 / 0); // both-warning {{undefined}}
}
class F {
public:
int a;
int *dtor;
int &idx;
constexpr F(int a, int *dtor, int &idx) : a(a), dtor(dtor), idx(idx) {}
constexpr ~F() noexcept(false){
dtor[idx] = a;
++idx;
}
};
constexpr int foo2() {
int dtorIndices[] = {0, 0, 0, 0};
int idx = 0;
{
F arr[2][2] = {F(1, dtorIndices, idx),
F(2, dtorIndices, idx),
F(3, dtorIndices, idx),
F(4, dtorIndices, idx)};
}
/// Reverse-reverse order.
assert(idx == 4);
assert(dtorIndices[0] == 4);
assert(dtorIndices[1] == 3);
assert(dtorIndices[2] == 2);
assert(dtorIndices[3] == 1);
return 0;
}
static_assert(foo2() == 0, "");
#endif
}
namespace NonConstReads {
#if __cplusplus >= 202002L
void *p = nullptr; // both-note {{declared here}}
int arr[!p]; // both-error {{not allowed at file scope}} \
// both-warning {{variable length arrays}} \
// both-note {{read of non-constexpr variable 'p'}}
int z; // both-note {{declared here}}
int a[z]; // both-error {{not allowed at file scope}} \
// both-warning {{variable length arrays}} \
// both-note {{read of non-const variable 'z'}}
#else
void *p = nullptr;
int arr[!p]; // both-error {{not allowed at file scope}}
int z;
int a[z]; // both-error {{not allowed at file scope}}
#endif
const int y = 0;
int yy[y];
}
namespace SelfComparison {
struct S {
int field;
static int static_field;
int array[4];
};
struct T {
int field;
static int static_field;
int array[4];
S s;
};
int struct_test(S s1, S s2, S *s3, T t) {
return s3->array[t.field] == s3->array[t.field]; // both-warning {{self-comparison always evaluates to true}}
};
}
namespace LocalIndex {
void test() {
const int const_subscript = 3;
int array[2]; // both-note {{declared here}}
array[const_subscript] = 0; // both-warning {{array index 3 is past the end of the array (that has type 'int[2]')}}
}
}
namespace LocalVLA {
struct Foo {
int x;
Foo(int x) : x(x) {}
};
struct Elidable {
Elidable();
};
void foo(int size) {
Elidable elidableDynArray[size];
#if __cplusplus >= 202002L
// both-note@-3 {{declared here}}
// both-warning@-3 {{variable length array}}
// both-note@-4 {{function parameter 'size' with unknown value}}
#endif
}
void f (unsigned int m) {
int e[2][m];
#if __cplusplus >= 202002L
// both-note@-3 {{declared here}}
// both-warning@-3 2{{variable length array}}
// both-note@-4 {{function parameter 'm' with unknown value}}
#endif
e[0][0] = 0;
}
}
char melchizedek[2];
typedef decltype(melchizedek[1] - melchizedek[0]) ptrdiff_t;
constexpr ptrdiff_t d1 = &melchizedek[1] - &melchizedek[0]; // ok
constexpr ptrdiff_t d3 = &melchizedek[0] - &melchizedek[1]; // ok
/// GH#88018
const int SZA[] = {};
void testZeroSizedArrayAccess() { unsigned c = SZA[4]; }
#if __cplusplus >= 202002L
constexpr int test_multiarray2() { // both-error {{never produces a constant expression}}
int multi2[2][1]; // both-note {{declared here}}
return multi2[2][0]; // both-note {{cannot access array element of pointer past the end of object}} \
// both-warning {{array index 2 is past the end of the array (that has type 'int[2][1]')}}
}
/// Same but with a dummy pointer.
int multi22[2][2]; // both-note {{declared here}}
int test_multiarray22() {
return multi22[2][0]; // both-warning {{array index 2 is past the end of the array (that has type 'int[2][2]')}}
}
#endif
namespace ArrayMemberAccess {
struct A {
int x;
};
void f(const A (&a)[]) {
bool cond = a->x;
}
}
namespace OnePastEndSub {
struct A {};
constexpr A a[3][3];
constexpr int diff2 = &a[1][3] - &a[1][0]; /// Used to crash.
}
static int same_entity_2[3];
constexpr int *get2() {
// This is a redeclaration of the same entity, even though it doesn't
// inherit the type of the prior declaration.
extern int same_entity_2[];
return same_entity_2;
}
static_assert(get2() == same_entity_2, "failed to find previous decl");
constexpr int zs[2][2][2][2] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
constexpr int fail(const int &p) {
return (&p)[64]; // both-note 2{{cannot refer to element 64 of array of 2 elements}} \
// both-note {{cannot refer to element 65 of array of 2 elements}} \
// both-note {{cannot refer to element 66 of array of 2 elements}}
}
static_assert(fail(*(&(&(*(*&(&zs[2] - 1)[0] + 2 - 2))[2])[-1][2] - 2)) == 11, ""); // both-error {{not an integral constant expression}} \
// both-note {{in call to}}
static_assert(fail( // both-error {{not an integral constant expression}} \
// both-note {{in call to 'fail(zs[1][1][0][0])'}}
*(*(*((*
(zs + 1)) /// int[2][2][2]
+ 1) /// int[2][2]
+ 2 - 2) /// int[2]
+ 2 - 2) /// int
));
static_assert(fail( // both-error {{not an integral constant expression}} \
// both-note {{in call to 'fail(zs[1][0][0][1])'}}
*(*(*((*
(zs + 1)) /// int[2][2][2]
+ 0) /// int[2][2]
+ 2 - 2) /// int[2]
+ 1) /// int
));
static_assert(fail( // both-error {{not an integral constant expression}} \
// both-note {{in call to 'fail(zs[1][0][0][2])'}}
*(*(*((*
(zs + 1)) /// int[2][2][2]
+ 0) /// int[2][2]
+ 2 - 2) /// int[2]
+ 2) /// int
));
namespace ZeroIndex {
constexpr char foo(const char *a) {
return a[0];
}
constexpr const char *f = "abc";
static_assert(foo(f + 1) == 'b', "");
}
namespace MultiDimArrayOffset {
#define assert(x) (x ? void(0) : __builtin_abort())
struct R {
int a;
};
template<typename T>
class view {
public:
T* V;
T* current;
constexpr view(T*V) : V(V), current(V) {}
constexpr void operator+=(unsigned N) {
current += N;
}
constexpr auto operator*() {
return *current;
}
};
constexpr int foo() {
R buffer[2][4] = {{1, 2, 3, 4}, {5, 6, 7, 8}};
auto A = buffer;
A += 1;
assert((**A).a == 5);
assert(buffer == buffer + 1 - 1);
assert(--A+0 == buffer+0);
view V(buffer);
assert(*V == &buffer[0][0]);
V += 1;
assert(*V == &buffer[1][0]);
assert(*(V.current) == &buffer[1][0]);
return 1;
}
static_assert(foo() == 1, "");
}
namespace ZeroSizeTypes {
constexpr int (*p1)[0] = 0, (*p2)[0] = 0;
constexpr int k = p2 - p1; // both-error {{constexpr variable 'k' must be initialized by a constant expression}} \
// both-note {{subtraction of pointers to type 'int[0]' of zero size}} \
// both-warning {{subtraction of pointers to type 'int[0]' of zero size has undefined behavior}}
int arr[5][0];
constexpr int f() { // both-error {{never produces a constant expression}}
return &arr[3] - &arr[0]; // both-note {{subtraction of pointers to type 'int[0]' of zero size}} \
// both-warning {{subtraction of pointers to type 'int[0]' of zero size has undefined behavior}}
}
constexpr int z[0]{};
static_assert((z - z) == 0);
}
namespace InvalidIndex {
constexpr int foo(int i) { // both-error {{no return statement in constexpr function}}
int a[] = {1,2,3};
return a[_z]; // both-error {{use of undeclared identifier}}
}
static_assert(foo(0) == 1, "");
}
namespace PointerSubscript {
template<typename T>
constexpr T foo() {
T ss[] = {{}, {}, {}};
T *s = &ss[0];
return s[2];
}
static_assert(foo<int>() == 0);
struct S{};
static_assert((foo<S>(), true));
}
namespace OnePastEndDiag {
constexpr int a(const int *b) {
return *b; // both-note {{read of dereferenced one-past-the-end pointer}}
}
constexpr int foo[] = {1,2};
constexpr int k = a(foo + 2); // both-error {{must be initialized by a constant expression}} \
// both-note {{in call to 'a(&foo[2])'}}
}
namespace DiscardedSubScriptExpr {
constexpr bool foo() { // both-error {{never produces a constant expression}}
int a[2] = {};
(void)a[3]; // both-note {{cannot refer to element 3 of array of 2 elements in a constant expression}}
return true;
}
}
|