aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/StaticAnalyzer/Checkers/StackAddrEscapeChecker.cpp
blob: a63497c593e5d5dee6b3eac87c64503ff01e3c60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
//=== StackAddrEscapeChecker.cpp ----------------------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines stack address leak checker, which checks if an invalid
// stack address is stored into a global or heap location. See CERT DCL30-C.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ExprCXX.h"
#include "clang/Basic/SourceManager.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;

namespace {
class StackAddrEscapeChecker
    : public Checker<check::PreCall, check::PreStmt<ReturnStmt>,
                     check::EndFunction> {
  mutable IdentifierInfo *dispatch_semaphore_tII = nullptr;
  mutable std::unique_ptr<BugType> BT_stackleak;
  mutable std::unique_ptr<BugType> BT_returnstack;
  mutable std::unique_ptr<BugType> BT_capturedstackasync;
  mutable std::unique_ptr<BugType> BT_capturedstackret;

public:
  enum CheckKind {
    CK_StackAddrEscapeChecker,
    CK_StackAddrAsyncEscapeChecker,
    CK_NumCheckKinds
  };

  bool ChecksEnabled[CK_NumCheckKinds] = {false};
  CheckerNameRef CheckNames[CK_NumCheckKinds];

  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const;
  void checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const;

private:
  void checkAsyncExecutedBlockCaptures(const BlockDataRegion &B,
                                       CheckerContext &C) const;
  void EmitReturnLeakError(CheckerContext &C, const MemRegion *LeakedRegion,
                           const Expr *RetE) const;
  bool isSemaphoreCaptured(const BlockDecl &B) const;
  static SourceRange genName(raw_ostream &os, const MemRegion *R,
                             ASTContext &Ctx);
  static SmallVector<std::pair<const MemRegion *, const StackSpaceRegion *>, 4>
  getCapturedStackRegions(const BlockDataRegion &B, CheckerContext &C);
  static bool isNotInCurrentFrame(const StackSpaceRegion *MS,
                                  CheckerContext &C);
};
} // namespace

SourceRange StackAddrEscapeChecker::genName(raw_ostream &os, const MemRegion *R,
                                            ASTContext &Ctx) {
  // Get the base region, stripping away fields and elements.
  R = R->getBaseRegion();
  SourceManager &SM = Ctx.getSourceManager();
  SourceRange range;
  os << "Address of ";

  // Check if the region is a compound literal.
  if (const auto *CR = dyn_cast<CompoundLiteralRegion>(R)) {
    const CompoundLiteralExpr *CL = CR->getLiteralExpr();
    os << "stack memory associated with a compound literal "
          "declared on line "
       << SM.getExpansionLineNumber(CL->getBeginLoc());
    range = CL->getSourceRange();
  } else if (const auto *AR = dyn_cast<AllocaRegion>(R)) {
    const Expr *ARE = AR->getExpr();
    SourceLocation L = ARE->getBeginLoc();
    range = ARE->getSourceRange();
    os << "stack memory allocated by call to alloca() on line "
       << SM.getExpansionLineNumber(L);
  } else if (const auto *BR = dyn_cast<BlockDataRegion>(R)) {
    const BlockDecl *BD = BR->getCodeRegion()->getDecl();
    SourceLocation L = BD->getBeginLoc();
    range = BD->getSourceRange();
    os << "stack-allocated block declared on line "
       << SM.getExpansionLineNumber(L);
  } else if (const auto *VR = dyn_cast<VarRegion>(R)) {
    os << "stack memory associated with local variable '" << VR->getString()
       << '\'';
    range = VR->getDecl()->getSourceRange();
  } else if (const auto *LER = dyn_cast<CXXLifetimeExtendedObjectRegion>(R)) {
    QualType Ty = LER->getValueType().getLocalUnqualifiedType();
    os << "stack memory associated with temporary object of type '";
    Ty.print(os, Ctx.getPrintingPolicy());
    os << "' lifetime extended by local variable";
    if (const IdentifierInfo *ID = LER->getExtendingDecl()->getIdentifier())
      os << " '" << ID->getName() << '\'';
    range = LER->getExpr()->getSourceRange();
  } else if (const auto *TOR = dyn_cast<CXXTempObjectRegion>(R)) {
    QualType Ty = TOR->getValueType().getLocalUnqualifiedType();
    os << "stack memory associated with temporary object of type '";
    Ty.print(os, Ctx.getPrintingPolicy());
    os << "'";
    range = TOR->getExpr()->getSourceRange();
  } else {
    llvm_unreachable("Invalid region in ReturnStackAddressChecker.");
  }

  return range;
}

bool StackAddrEscapeChecker::isNotInCurrentFrame(const StackSpaceRegion *MS,
                                                 CheckerContext &C) {
  return MS->getStackFrame() != C.getStackFrame();
}

bool StackAddrEscapeChecker::isSemaphoreCaptured(const BlockDecl &B) const {
  if (!dispatch_semaphore_tII)
    dispatch_semaphore_tII = &B.getASTContext().Idents.get("dispatch_semaphore_t");
  for (const auto &C : B.captures()) {
    const auto *T = C.getVariable()->getType()->getAs<TypedefType>();
    if (T && T->getDecl()->getIdentifier() == dispatch_semaphore_tII)
      return true;
  }
  return false;
}

SmallVector<std::pair<const MemRegion *, const StackSpaceRegion *>, 4>
StackAddrEscapeChecker::getCapturedStackRegions(const BlockDataRegion &B,
                                                CheckerContext &C) {
  SmallVector<std::pair<const MemRegion *, const StackSpaceRegion *>, 4>
      Regions;
  ProgramStateRef State = C.getState();
  for (auto Var : B.referenced_vars()) {
    SVal Val = State->getSVal(Var.getCapturedRegion());
    if (const MemRegion *Region = Val.getAsRegion()) {
      if (const auto *Space =
              Region->getMemorySpaceAs<StackSpaceRegion>(State)) {
        Regions.emplace_back(Region, Space);
      }
    }
  }
  return Regions;
}

static void EmitReturnedAsPartOfError(llvm::raw_ostream &OS, SVal ReturnedVal,
                                      const MemRegion *LeakedRegion) {
  if (const MemRegion *ReturnedRegion = ReturnedVal.getAsRegion()) {
    if (isa<BlockDataRegion>(ReturnedRegion)) {
      OS << " is captured by a returned block";
      return;
    }
  }

  // Generic message
  OS << " returned to caller";
}

void StackAddrEscapeChecker::EmitReturnLeakError(CheckerContext &C,
                                                 const MemRegion *R,
                                                 const Expr *RetE) const {
  ExplodedNode *N = C.generateNonFatalErrorNode();
  if (!N)
    return;
  if (!BT_returnstack)
    BT_returnstack = std::make_unique<BugType>(
        CheckNames[CK_StackAddrEscapeChecker],
        "Return of address to stack-allocated memory");

  // Generate a report for this bug.
  SmallString<128> buf;
  llvm::raw_svector_ostream os(buf);

  // Error message formatting
  SourceRange range = genName(os, R, C.getASTContext());
  EmitReturnedAsPartOfError(os, C.getSVal(RetE), R);

  auto report =
      std::make_unique<PathSensitiveBugReport>(*BT_returnstack, os.str(), N);
  report->addRange(RetE->getSourceRange());
  if (range.isValid())
    report->addRange(range);
  C.emitReport(std::move(report));
}

void StackAddrEscapeChecker::checkAsyncExecutedBlockCaptures(
    const BlockDataRegion &B, CheckerContext &C) const {
  // There is a not-too-uncommon idiom
  // where a block passed to dispatch_async captures a semaphore
  // and then the thread (which called dispatch_async) is blocked on waiting
  // for the completion of the execution of the block
  // via dispatch_semaphore_wait. To avoid false-positives (for now)
  // we ignore all the blocks which have captured
  // a variable of the type "dispatch_semaphore_t".
  if (isSemaphoreCaptured(*B.getDecl()))
    return;
  auto Regions = getCapturedStackRegions(B, C);
  for (const MemRegion *Region : llvm::make_first_range(Regions)) {
    // The block passed to dispatch_async may capture another block
    // created on the stack. However, there is no leak in this situaton,
    // no matter if ARC or no ARC is enabled:
    // dispatch_async copies the passed "outer" block (via Block_copy)
    // and if the block has captured another "inner" block,
    // the "inner" block will be copied as well.
    if (isa<BlockDataRegion>(Region))
      continue;
    ExplodedNode *N = C.generateNonFatalErrorNode();
    if (!N)
      continue;
    if (!BT_capturedstackasync)
      BT_capturedstackasync = std::make_unique<BugType>(
          CheckNames[CK_StackAddrAsyncEscapeChecker],
          "Address of stack-allocated memory is captured");
    SmallString<128> Buf;
    llvm::raw_svector_ostream Out(Buf);
    SourceRange Range = genName(Out, Region, C.getASTContext());
    Out << " is captured by an asynchronously-executed block";
    auto Report = std::make_unique<PathSensitiveBugReport>(
        *BT_capturedstackasync, Out.str(), N);
    if (Range.isValid())
      Report->addRange(Range);
    C.emitReport(std::move(Report));
  }
}

void StackAddrEscapeChecker::checkPreCall(const CallEvent &Call,
                                          CheckerContext &C) const {
  if (!ChecksEnabled[CK_StackAddrAsyncEscapeChecker])
    return;
  if (!Call.isGlobalCFunction("dispatch_after") &&
      !Call.isGlobalCFunction("dispatch_async"))
    return;
  for (unsigned Idx = 0, NumArgs = Call.getNumArgs(); Idx < NumArgs; ++Idx) {
    if (const BlockDataRegion *B = dyn_cast_or_null<BlockDataRegion>(
            Call.getArgSVal(Idx).getAsRegion()))
      checkAsyncExecutedBlockCaptures(*B, C);
  }
}

/// A visitor made for use with a ScanReachableSymbols scanner, used
/// for finding stack regions within an SVal that live on the current
/// stack frame of the given checker context. This visitor excludes
/// NonParamVarRegion that data is bound to in a BlockDataRegion's
/// bindings, since these are likely uninteresting, e.g., in case a
/// temporary is constructed on the stack, but it captures values
/// that would leak.
class FindStackRegionsSymbolVisitor final : public SymbolVisitor {
  CheckerContext &Ctxt;
  const StackFrameContext *PoppedStackFrame;
  SmallVectorImpl<const MemRegion *> &EscapingStackRegions;

public:
  explicit FindStackRegionsSymbolVisitor(
      CheckerContext &Ctxt,
      SmallVectorImpl<const MemRegion *> &StorageForStackRegions)
      : Ctxt(Ctxt), PoppedStackFrame(Ctxt.getStackFrame()),
        EscapingStackRegions(StorageForStackRegions) {}

  bool VisitSymbol(SymbolRef sym) override { return true; }

  bool VisitMemRegion(const MemRegion *MR) override {
    SaveIfEscapes(MR);

    if (const BlockDataRegion *BDR = MR->getAs<BlockDataRegion>())
      return VisitBlockDataRegionCaptures(BDR);

    return true;
  }

private:
  void SaveIfEscapes(const MemRegion *MR) {
    const auto *SSR = MR->getMemorySpaceAs<StackSpaceRegion>(Ctxt.getState());

    if (!SSR)
      return;

    const StackFrameContext *CapturedSFC = SSR->getStackFrame();
    if (CapturedSFC == PoppedStackFrame ||
        PoppedStackFrame->isParentOf(CapturedSFC))
      EscapingStackRegions.push_back(MR);
  }

  bool VisitBlockDataRegionCaptures(const BlockDataRegion *BDR) {
    for (auto Var : BDR->referenced_vars()) {
      SVal Val = Ctxt.getState()->getSVal(Var.getCapturedRegion());
      const MemRegion *Region = Val.getAsRegion();
      if (Region) {
        SaveIfEscapes(Region);
        VisitMemRegion(Region);
      }
    }

    return false;
  }
};

/// Given some memory regions that are flagged by FindStackRegionsSymbolVisitor,
/// this function filters out memory regions that are being returned that are
/// likely not true leaks:
/// 1. If returning a block data region that has stack memory space
/// 2. If returning a constructed object that has stack memory space
static SmallVector<const MemRegion *> FilterReturnExpressionLeaks(
    const SmallVectorImpl<const MemRegion *> &MaybeEscaped, CheckerContext &C,
    const Expr *RetE, SVal &RetVal) {

  SmallVector<const MemRegion *> WillEscape;

  const MemRegion *RetRegion = RetVal.getAsRegion();

  // Returning a record by value is fine. (In this case, the returned
  // expression will be a copy-constructor, possibly wrapped in an
  // ExprWithCleanups node.)
  if (const ExprWithCleanups *Cleanup = dyn_cast<ExprWithCleanups>(RetE))
    RetE = Cleanup->getSubExpr();
  bool IsConstructExpr =
      isa<CXXConstructExpr>(RetE) && RetE->getType()->isRecordType();

  // The CK_CopyAndAutoreleaseBlockObject cast causes the block to be copied
  // so the stack address is not escaping here.
  bool IsCopyAndAutoreleaseBlockObj = false;
  if (const auto *ICE = dyn_cast<ImplicitCastExpr>(RetE)) {
    IsCopyAndAutoreleaseBlockObj =
        isa_and_nonnull<BlockDataRegion>(RetRegion) &&
        ICE->getCastKind() == CK_CopyAndAutoreleaseBlockObject;
  }

  for (const MemRegion *MR : MaybeEscaped) {
    if (RetRegion == MR && (IsCopyAndAutoreleaseBlockObj || IsConstructExpr))
      continue;

    WillEscape.push_back(MR);
  }

  return WillEscape;
}

/// For use in finding regions that live on the checker context's current
/// stack frame, deep in the SVal representing the return value.
static SmallVector<const MemRegion *>
FindEscapingStackRegions(CheckerContext &C, const Expr *RetE, SVal RetVal) {
  SmallVector<const MemRegion *> FoundStackRegions;

  FindStackRegionsSymbolVisitor Finder(C, FoundStackRegions);
  ScanReachableSymbols Scanner(C.getState(), Finder);
  Scanner.scan(RetVal);

  return FilterReturnExpressionLeaks(FoundStackRegions, C, RetE, RetVal);
}

void StackAddrEscapeChecker::checkPreStmt(const ReturnStmt *RS,
                                          CheckerContext &C) const {
  if (!ChecksEnabled[CK_StackAddrEscapeChecker])
    return;

  const Expr *RetE = RS->getRetValue();
  if (!RetE)
    return;
  RetE = RetE->IgnoreParens();

  SVal V = C.getSVal(RetE);

  SmallVector<const MemRegion *> EscapedStackRegions =
      FindEscapingStackRegions(C, RetE, V);

  for (const MemRegion *ER : EscapedStackRegions)
    EmitReturnLeakError(C, ER, RetE);
}

static const MemSpaceRegion *getStackOrGlobalSpaceRegion(ProgramStateRef State,
                                                         const MemRegion *R) {
  assert(R);
  if (const auto *MemSpace = R->getMemorySpace(State);
      isa<StackSpaceRegion, GlobalsSpaceRegion>(MemSpace))
    return MemSpace;

  // If R describes a lambda capture, it will be a symbolic region
  // referring to a field region of another symbolic region.
  if (const auto *SymReg = R->getBaseRegion()->getAs<SymbolicRegion>()) {
    if (const auto *OriginReg = SymReg->getSymbol()->getOriginRegion())
      return getStackOrGlobalSpaceRegion(State, OriginReg);
  }
  return nullptr;
}

static const MemRegion *getOriginBaseRegion(const MemRegion *Reg) {
  Reg = Reg->getBaseRegion();
  while (const auto *SymReg = dyn_cast<SymbolicRegion>(Reg)) {
    const auto *OriginReg = SymReg->getSymbol()->getOriginRegion();
    if (!OriginReg)
      break;
    Reg = OriginReg->getBaseRegion();
  }
  return Reg;
}

static std::optional<std::string> printReferrer(ProgramStateRef State,
                                                const MemRegion *Referrer) {
  assert(Referrer);
  const StringRef ReferrerMemorySpace = [](const MemSpaceRegion *Space) {
    if (isa<StaticGlobalSpaceRegion>(Space))
      return "static";
    if (isa<GlobalsSpaceRegion>(Space))
      return "global";
    assert(isa<StackSpaceRegion>(Space));
    // This case covers top-level and inlined analyses.
    return "caller";
  }(getStackOrGlobalSpaceRegion(State, Referrer));

  while (!Referrer->canPrintPretty()) {
    if (const auto *SymReg = dyn_cast<SymbolicRegion>(Referrer);
        SymReg && SymReg->getSymbol()->getOriginRegion()) {
      Referrer = SymReg->getSymbol()->getOriginRegion()->getBaseRegion();
    } else if (isa<CXXThisRegion>(Referrer)) {
      // Skip members of a class, it is handled in CheckExprLifetime.cpp as
      // warn_bind_ref_member_to_parameter or
      // warn_init_ptr_member_to_parameter_addr
      return std::nullopt;
    } else if (isa<AllocaRegion>(Referrer)) {
      // Skip alloca() regions, they indicate advanced memory management
      // and higher likelihood of CSA false positives.
      return std::nullopt;
    } else {
      assert(false && "Unexpected referrer region type.");
      return std::nullopt;
    }
  }
  assert(Referrer);
  assert(Referrer->canPrintPretty());

  std::string buf;
  llvm::raw_string_ostream os(buf);
  os << ReferrerMemorySpace << " variable ";
  Referrer->printPretty(os);
  return buf;
}

/// Check whether \p Region refers to a freshly minted symbol after an opaque
/// function call.
static bool isInvalidatedSymbolRegion(const MemRegion *Region) {
  const auto *SymReg = Region->getAs<SymbolicRegion>();
  if (!SymReg)
    return false;
  SymbolRef Symbol = SymReg->getSymbol();

  const auto *DerS = dyn_cast<SymbolDerived>(Symbol);
  return DerS && isa_and_nonnull<SymbolConjured>(DerS->getParentSymbol());
}

void StackAddrEscapeChecker::checkEndFunction(const ReturnStmt *RS,
                                              CheckerContext &Ctx) const {
  if (!ChecksEnabled[CK_StackAddrEscapeChecker])
    return;

  ExplodedNode *Node = Ctx.getPredecessor();

  bool ExitingTopFrame =
      Ctx.getPredecessor()->getLocationContext()->inTopFrame();

  if (ExitingTopFrame &&
      Node->getLocation().getTag() == ExprEngine::cleanupNodeTag() &&
      Node->getFirstPred()) {
    // When finishing analysis of a top-level function, engine proactively
    // removes dead symbols thus preventing this checker from looking through
    // the output parameters. Take 1 step back, to the node where these symbols
    // and their bindings are still present
    Node = Node->getFirstPred();
  }

  // Iterate over all bindings to global variables and see if it contains
  // a memory region in the stack space.
  class CallBack : public StoreManager::BindingsHandler {
  private:
    CheckerContext &Ctx;
    ProgramStateRef State;
    const StackFrameContext *PoppedFrame;
    const bool TopFrame;

    /// Look for stack variables referring to popped stack variables.
    /// Returns true only if it found some dangling stack variables
    /// referred by an other stack variable from different stack frame.
    bool checkForDanglingStackVariable(const MemRegion *Referrer,
                                       const MemRegion *Referred) {
      const auto *ReferrerMemSpace =
          getStackOrGlobalSpaceRegion(State, Referrer);
      const auto *ReferredMemSpace =
          Referred->getMemorySpaceAs<StackSpaceRegion>(State);

      if (!ReferrerMemSpace || !ReferredMemSpace)
        return false;

      const auto *ReferrerStackSpace =
          ReferrerMemSpace->getAs<StackSpaceRegion>();

      if (!ReferrerStackSpace)
        return false;

      if (const auto *ReferredFrame = ReferredMemSpace->getStackFrame();
          ReferredFrame != PoppedFrame) {
        return false;
      }

      if (ReferrerStackSpace->getStackFrame()->isParentOf(PoppedFrame)) {
        V.emplace_back(Referrer, Referred);
        return true;
      }
      if (isa<StackArgumentsSpaceRegion>(ReferrerMemSpace) &&
          // Not a simple ptr (int*) but something deeper, e.g. int**
          isa<SymbolicRegion>(Referrer->getBaseRegion()) &&
          ReferrerStackSpace->getStackFrame() == PoppedFrame && TopFrame) {
        // Output parameter of a top-level function
        V.emplace_back(Referrer, Referred);
        return true;
      }
      return false;
    }

    // Keep track of the variables that were invalidated through an opaque
    // function call. Even if the initial values of such variables were bound to
    // an address of a local variable, we cannot claim anything now, at the
    // function exit, so skip them to avoid false positives.
    void recordInInvalidatedRegions(const MemRegion *Region) {
      if (isInvalidatedSymbolRegion(Region))
        ExcludedRegions.insert(getOriginBaseRegion(Region));
    }

  public:
    SmallVector<std::pair<const MemRegion *, const MemRegion *>, 10> V;
    // ExcludedRegions are skipped from reporting.
    // I.e., if a referrer in this set, skip the related bug report.
    // It is useful to avoid false positive for the variables that were
    // reset to a conjured value after an opaque function call.
    llvm::SmallPtrSet<const MemRegion *, 4> ExcludedRegions;

    CallBack(CheckerContext &CC, bool TopFrame)
        : Ctx(CC), State(CC.getState()), PoppedFrame(CC.getStackFrame()),
          TopFrame(TopFrame) {}

    bool HandleBinding(StoreManager &SMgr, Store S, const MemRegion *Region,
                       SVal Val) override {
      recordInInvalidatedRegions(Region);
      const MemRegion *VR = Val.getAsRegion();
      if (!VR)
        return true;

      if (checkForDanglingStackVariable(Region, VR))
        return true;

      // Check the globals for the same.
      if (!isa_and_nonnull<GlobalsSpaceRegion>(
              getStackOrGlobalSpaceRegion(State, Region)))
        return true;

      if (VR) {
        if (const auto *S = VR->getMemorySpaceAs<StackSpaceRegion>(State);
            S && !isNotInCurrentFrame(S, Ctx)) {
          V.emplace_back(Region, VR);
        }
      }
      return true;
    }
  };

  CallBack Cb(Ctx, ExitingTopFrame);
  ProgramStateRef State = Node->getState();
  State->getStateManager().getStoreManager().iterBindings(State->getStore(),
                                                          Cb);

  if (Cb.V.empty())
    return;

  // Generate an error node.
  ExplodedNode *N = Ctx.generateNonFatalErrorNode(State, Node);
  if (!N)
    return;

  if (!BT_stackleak)
    BT_stackleak =
        std::make_unique<BugType>(CheckNames[CK_StackAddrEscapeChecker],
                                  "Stack address leaks outside of stack frame");

  for (const auto &P : Cb.V) {
    const MemRegion *Referrer = P.first->getBaseRegion();
    const MemRegion *Referred = P.second;
    if (Cb.ExcludedRegions.contains(getOriginBaseRegion(Referrer))) {
      continue;
    }

    // Generate a report for this bug.
    const StringRef CommonSuffix =
        " upon returning to the caller.  This will be a dangling reference";
    SmallString<128> Buf;
    llvm::raw_svector_ostream Out(Buf);
    const SourceRange Range = genName(Out, Referred, Ctx.getASTContext());

    if (isa<CXXTempObjectRegion, CXXLifetimeExtendedObjectRegion>(Referrer)) {
      Out << " is still referred to by a temporary object on the stack"
          << CommonSuffix;
      auto Report =
          std::make_unique<PathSensitiveBugReport>(*BT_stackleak, Out.str(), N);
      if (Range.isValid())
        Report->addRange(Range);
      Ctx.emitReport(std::move(Report));
      return;
    }

    auto ReferrerVariable = printReferrer(State, Referrer);
    if (!ReferrerVariable) {
      continue;
    }

    Out << " is still referred to by the " << *ReferrerVariable << CommonSuffix;
    auto Report =
        std::make_unique<PathSensitiveBugReport>(*BT_stackleak, Out.str(), N);
    if (Range.isValid())
      Report->addRange(Range);

    Ctx.emitReport(std::move(Report));
  }
}

void ento::registerStackAddrEscapeBase(CheckerManager &mgr) {
  mgr.registerChecker<StackAddrEscapeChecker>();
}

bool ento::shouldRegisterStackAddrEscapeBase(const CheckerManager &mgr) {
  return true;
}

#define REGISTER_CHECKER(name)                                                 \
  void ento::register##name(CheckerManager &Mgr) {                             \
    StackAddrEscapeChecker *Chk = Mgr.getChecker<StackAddrEscapeChecker>();    \
    Chk->ChecksEnabled[StackAddrEscapeChecker::CK_##name] = true;              \
    Chk->CheckNames[StackAddrEscapeChecker::CK_##name] =                       \
        Mgr.getCurrentCheckerName();                                           \
  }                                                                            \
                                                                               \
  bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }

REGISTER_CHECKER(StackAddrEscapeChecker)
REGISTER_CHECKER(StackAddrAsyncEscapeChecker)