1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
|
//===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC constructs, and things
/// that are not clause specific.
///
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaOpenACC.h"
#include "clang/AST/DeclOpenACC.h"
#include "clang/AST/StmtOpenACC.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
using namespace clang;
namespace {
bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K,
SourceLocation StartLoc, bool IsStmt) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, both invalid and unimplemented don't really need to
// do anything.
break;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Atomic:
if (!IsStmt)
return S.Diag(StartLoc, diag::err_acc_construct_appertainment) << K;
break;
}
return false;
}
void CollectActiveReductionClauses(
llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses,
ArrayRef<OpenACCClause *> CurClauses) {
for (auto *CurClause : CurClauses) {
if (auto *RedClause = dyn_cast<OpenACCReductionClause>(CurClause);
RedClause && !RedClause->getVarList().empty())
ActiveClauses.push_back(RedClause);
}
}
// Depth needs to be preserved for all associated statements that aren't
// supposed to modify the compute/combined/loop construct information.
bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) {
switch (DK) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
return false;
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Atomic:
return true;
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Routine:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
llvm_unreachable("Doesn't have an associated stmt");
case OpenACCDirectiveKind::Invalid:
llvm_unreachable("Unhandled directive kind?");
}
llvm_unreachable("Unhandled directive kind?");
}
} // namespace
SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {}
SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII(
SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses)
: SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo),
DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel),
OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc),
OldLoopVectorClauseLoc(S.LoopVectorClauseLoc),
OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo),
ActiveReductionClauses(S.ActiveReductionClauses),
LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DirKind)) {
// Compute constructs end up taking their 'loop'.
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// Implement the 'unless within a nested compute region' part.
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
SemaRef.LoopWithoutSeqInfo = {};
} else if (DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(), DirKind};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
} else if (DirKind == OpenACCDirectiveKind::Loop) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (SemaRef.getActiveComputeConstructInfo().Kind ==
OpenACCDirectiveKind::Kernels &&
UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(),
OpenACCDirectiveKind::Kernels};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
}
}
namespace {
// Given two collapse clauses, and the uninstanted version of the new one,
// return the 'best' one for the purposes of setting the collapse checking
// values.
const OpenACCCollapseClause *
getBestCollapseCandidate(const OpenACCCollapseClause *Old,
const OpenACCCollapseClause *New,
const OpenACCCollapseClause *UnInstNew) {
// If the loop count is nullptr, it is because instantiation failed, so this
// can't be the best one.
if (!New->getLoopCount())
return Old;
// If the loop-count had an error, than 'new' isn't a candidate.
if (!New->getLoopCount())
return Old;
// Don't consider uninstantiated ones, since we can't really check these.
if (New->getLoopCount()->isInstantiationDependent())
return Old;
// If this is an instantiation, and the old version wasn't instantation
// dependent, than nothing has changed and we've already done a diagnostic
// based on this one, so don't consider it.
if (UnInstNew && !UnInstNew->getLoopCount()->isInstantiationDependent())
return Old;
// New is now a valid candidate, so if there isn't an old one at this point,
// New is the only valid one.
if (!Old)
return New;
// If the 'New' expression has a larger value than 'Old', then it is the new
// best candidate.
if (cast<ConstantExpr>(Old->getLoopCount())->getResultAsAPSInt() <
cast<ConstantExpr>(New->getLoopCount())->getResultAsAPSInt())
return New;
return Old;
}
} // namespace
void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// Reset this checking for loops that aren't covered in a RAII object.
SemaRef.LoopInfo.CurLevelHasLoopAlready = false;
SemaRef.CollapseInfo.CollapseDepthSatisfied = true;
SemaRef.CollapseInfo.CurCollapseCount = 0;
SemaRef.TileInfo.TileDepthSatisfied = true;
// We make sure to take an optional list of uninstantiated clauses, so that
// we can check to make sure we don't 'double diagnose' in the event that
// the value of 'N' was not dependent in a template. Since we cannot count on
// there only being a single collapse clause, we count on the order to make
// sure get the matching ones, and we count on TreeTransform not removing
// these, even if loop-count instantiation failed. We can check the
// non-dependent ones right away, and realize that subsequent instantiation
// can only make it more specific.
auto *UnInstClauseItr =
llvm::find_if(UnInstClauses, llvm::IsaPred<OpenACCCollapseClause>);
auto *ClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCCollapseClause>);
const OpenACCCollapseClause *FoundClause = nullptr;
// Loop through the list of Collapse clauses and find the one that:
// 1- Has a non-dependent, non-null loop count (null means error, likely
// during instantiation).
// 2- If UnInstClauses isn't empty, its corresponding
// loop count was dependent.
// 3- Has the largest 'loop count' of all.
while (ClauseItr != Clauses.end()) {
const OpenACCCollapseClause *CurClause =
cast<OpenACCCollapseClause>(*ClauseItr);
const OpenACCCollapseClause *UnInstCurClause =
UnInstClauseItr == UnInstClauses.end()
? nullptr
: cast<OpenACCCollapseClause>(*UnInstClauseItr);
FoundClause =
getBestCollapseCandidate(FoundClause, CurClause, UnInstCurClause);
UnInstClauseItr =
UnInstClauseItr == UnInstClauses.end()
? UnInstClauseItr
: std::find_if(std::next(UnInstClauseItr), UnInstClauses.end(),
llvm::IsaPred<OpenACCCollapseClause>);
ClauseItr = std::find_if(std::next(ClauseItr), Clauses.end(),
llvm::IsaPred<OpenACCCollapseClause>);
}
if (!FoundClause)
return;
SemaRef.CollapseInfo.ActiveCollapse = FoundClause;
SemaRef.CollapseInfo.CollapseDepthSatisfied = false;
SemaRef.CollapseInfo.CurCollapseCount =
cast<ConstantExpr>(FoundClause->getLoopCount())->getResultAsAPSInt();
SemaRef.CollapseInfo.DirectiveKind = DirKind;
}
void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// We don't diagnose if this is during instantiation, since the only thing we
// care about is the number of arguments, which we can figure out without
// instantiation, so we don't want to double-diagnose.
if (UnInstClauses.size() > 0)
return;
auto *TileClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCTileClause>);
if (Clauses.end() == TileClauseItr)
return;
OpenACCTileClause *TileClause = cast<OpenACCTileClause>(*TileClauseItr);
// Multiple tile clauses are allowed, so ensure that we use the one with the
// largest 'tile count'.
while (Clauses.end() !=
(TileClauseItr = std::find_if(std::next(TileClauseItr), Clauses.end(),
llvm::IsaPred<OpenACCTileClause>))) {
OpenACCTileClause *NewClause = cast<OpenACCTileClause>(*TileClauseItr);
if (NewClause->getSizeExprs().size() > TileClause->getSizeExprs().size())
TileClause = NewClause;
}
SemaRef.TileInfo.ActiveTile = TileClause;
SemaRef.TileInfo.TileDepthSatisfied = false;
SemaRef.TileInfo.CurTileCount =
static_cast<unsigned>(TileClause->getSizeExprs().size());
SemaRef.TileInfo.DirectiveKind = DirKind;
}
SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() {
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels ||
DirKind == OpenACCDirectiveKind::Loop ||
DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo;
SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel;
SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc;
SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc;
SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo;
SemaRef.ActiveReductionClauses.swap(ActiveReductionClauses);
} else if (DirKind == OpenACCDirectiveKind::Data ||
DirKind == OpenACCDirectiveKind::HostData) {
// Intentionally doesn't reset the Loop, Compute Construct, or reduction
// effects.
}
}
void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K,
SourceLocation DirLoc) {
// Start an evaluation context to parse the clause arguments on.
SemaRef.PushExpressionEvaluationContext(
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
// There is nothing do do here as all we have at this point is the name of the
// construct itself.
}
ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK,
OpenACCClauseKind CK, SourceLocation Loc,
Expr *IntExpr) {
assert(((DK != OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK != OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid)) &&
"Only one of directive or clause kind should be provided");
class IntExprConverter : public Sema::ICEConvertDiagnoser {
OpenACCDirectiveKind DirectiveKind;
OpenACCClauseKind ClauseKind;
Expr *IntExpr;
// gets the index into the diagnostics so we can use this for clauses,
// directives, and sub array.s
unsigned getDiagKind() const {
if (ClauseKind != OpenACCClauseKind::Invalid)
return 0;
if (DirectiveKind != OpenACCDirectiveKind::Invalid)
return 1;
return 2;
}
public:
IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *IntExpr)
: ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false,
/*Suppress=*/false,
/*SuppressConversion=*/true),
DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {}
bool match(QualType T) override {
// OpenACC spec just calls this 'integer expression' as having an
// 'integer type', so fall back on C99's 'integer type'.
return T->isIntegerType();
}
SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_requires_integer)
<< getDiagKind() << ClauseKind << DirectiveKind << T;
}
SemaBase::SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_incomplete_class_type)
<< T << IntExpr->getSourceRange();
}
SemaBase::SemaDiagnosticBuilder
diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
return S.Diag(Loc, diag::err_acc_int_expr_explicit_conversion)
<< T << ConvTy;
}
SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S,
CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_multiple_conversions) << T;
}
SemaBase::SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseConversion(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} IntExprDiagnoser(DK, CK, IntExpr);
if (!IntExpr)
return ExprError();
ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion(
Loc, IntExpr, IntExprDiagnoser);
if (IntExprResult.isInvalid())
return ExprError();
IntExpr = IntExprResult.get();
if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType())
return ExprError();
// TODO OpenACC: Do we want to perform usual unary conversions here? When
// doing codegen we might find that is necessary, but skip it for now.
return IntExpr;
}
bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind,
Expr *VarExpr) {
// We already know that VarExpr is a proper reference to a variable, so we
// should be able to just take the type of the expression to get the type of
// the referenced variable.
// We've already seen an error, don't diagnose anything else.
if (!VarExpr || VarExpr->containsErrors())
return false;
if (isa<ArraySectionExpr>(VarExpr->IgnoreParenImpCasts()) ||
VarExpr->hasPlaceholderType(BuiltinType::ArraySection)) {
Diag(VarExpr->getExprLoc(), diag::err_array_section_use) << /*OpenACC=*/0;
Diag(VarExpr->getExprLoc(), diag::note_acc_expected_pointer_var);
return true;
}
QualType Ty = VarExpr->getType();
Ty = Ty.getNonReferenceType().getUnqualifiedType();
// Nothing we can do if this is a dependent type.
if (Ty->isDependentType())
return false;
if (!Ty->isPointerType())
return Diag(VarExpr->getExprLoc(), diag::err_acc_var_not_pointer_type)
<< ClauseKind << Ty;
return false;
}
void SemaOpenACC::ActOnStartParseVar(OpenACCDirectiveKind DK,
OpenACCClauseKind CK) {
if (DK == OpenACCDirectiveKind::Cache) {
CacheInfo.ParsingCacheVarList = true;
CacheInfo.IsInvalidCacheRef = false;
}
}
void SemaOpenACC::ActOnInvalidParseVar() {
CacheInfo.ParsingCacheVarList = false;
CacheInfo.IsInvalidCacheRef = false;
}
ExprResult SemaOpenACC::ActOnCacheVar(Expr *VarExpr) {
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// Clear this here, so we can do the returns based on the invalid cache ref
// here. Note all return statements in this function must return ExprError if
// IsInvalidCacheRef. However, instead of doing an 'early return' in that
// case, we can let the rest of the diagnostics happen, as the invalid decl
// ref is a warning.
bool WasParsingInvalidCacheRef =
CacheInfo.ParsingCacheVarList && CacheInfo.IsInvalidCacheRef;
CacheInfo.ParsingCacheVarList = false;
CacheInfo.IsInvalidCacheRef = false;
if (!isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_cache);
return ExprError();
}
// It isn't clear what 'simple array element or simple subarray' means, so we
// will just allow arbitrary depth.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr;
}
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl())) {
return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr;
}
}
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(CurVarExpr))
return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_cache);
return ExprError();
}
void SemaOpenACC::CheckDeclReference(SourceLocation Loc, Expr *E, Decl *D) {
if (!getLangOpts().OpenACC || !CacheInfo.ParsingCacheVarList || !D ||
D->isInvalidDecl())
return;
// A 'cache' variable reference MUST be declared before the 'acc.loop' we
// generate in codegen, so we have to mark it invalid here in some way. We do
// so in a bit of a convoluted way as there is no good way to put this into
// the AST, so we store it in SemaOpenACC State. We can check the Scope
// during parsing to make sure there is a 'loop' before the decl is
// declared(and skip during instantiation).
// We only diagnose this as a warning, as this isn't required by the standard
// (unless you take a VERY awkward reading of some awkward prose).
Scope *CurScope = SemaRef.getCurScope();
// if we are at TU level, we are either doing some EXTRA wacky, or are in a
// template instantiation, so just give up.
if (CurScope->getDepth() == 0)
return;
while (CurScope) {
// If we run into a loop construct scope, than this is 'correct' in that the
// declaration is outside of the loop.
if (CurScope->isOpenACCLoopConstructScope())
return;
if (CurScope->isDeclScope(D)) {
Diag(Loc, diag::warn_acc_cache_var_not_outside_loop);
CacheInfo.IsInvalidCacheRef = true;
}
CurScope = CurScope->getParent();
}
// If we don't find the decl at all, we assume that it must be outside of the
// loop (or we aren't in a loop!) so skip the diagnostic.
}
namespace {
// Check whether the type of the thing we are referencing is OK for things like
// private, firstprivate, and reduction, which require certain operators to be
// available.
ExprResult CheckVarType(SemaOpenACC &S, OpenACCClauseKind CK, Expr *VarExpr,
Expr *InnerExpr) {
// There is nothing to do here, only these three have these sorts of
// restrictions.
if (CK != OpenACCClauseKind::Private &&
CK != OpenACCClauseKind::FirstPrivate &&
CK != OpenACCClauseKind::Reduction)
return VarExpr;
// We can't test this if it isn't here, or if the type isn't clear yet.
if (!InnerExpr || InnerExpr->isTypeDependent())
return VarExpr;
const auto *RD = InnerExpr->getType()->getAsCXXRecordDecl();
// if this isn't a C++ record decl, we can create/copy/destroy this thing at
// will without problem, so this is a success.
if (!RD)
return VarExpr;
// TODO: OpenACC:
// Private must have default ctor + dtor in InnerExpr
// FirstPrivate must have copyctor + dtor in InnerExpr
// Reduction must have copyctor + dtor + operation in InnerExpr
// TODO OpenACC: It isn't clear what the requirements are for default
// constructor/copy constructor are for First private and reduction, but
// private requires a default constructor.
if (CK == OpenACCClauseKind::Private) {
bool HasNonDeletedDefaultCtor =
llvm::find_if(RD->ctors(), [](const CXXConstructorDecl *CD) {
return CD->isDefaultConstructor() && !CD->isDeleted();
}) != RD->ctors().end();
if (!HasNonDeletedDefaultCtor && !RD->needsImplicitDefaultConstructor()) {
S.Diag(InnerExpr->getBeginLoc(),
clang::diag::warn_acc_var_referenced_lacks_op)
<< InnerExpr->getType() << CK
<< clang::diag::AccVarReferencedReason::DefCtor;
return ExprError();
}
}
// All 3 things need to make sure they have a dtor.
bool DestructorDeleted =
RD->getDestructor() && RD->getDestructor()->isDeleted();
if (DestructorDeleted && !RD->needsImplicitDestructor()) {
S.Diag(InnerExpr->getBeginLoc(),
clang::diag::warn_acc_var_referenced_lacks_op)
<< InnerExpr->getType() << CK
<< clang::diag::AccVarReferencedReason::Dtor;
return ExprError();
}
return VarExpr;
}
} // namespace
ExprResult SemaOpenACC::ActOnVar(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *VarExpr) {
// This has unique enough restrictions that we should split it to a separate
// function.
if (DK == OpenACCDirectiveKind::Cache)
return ActOnCacheVar(VarExpr);
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// 'use_device' doesn't allow array subscript or array sections.
// OpenACC3.3 2.8:
// A 'var' in a 'use_device' clause must be the name of a variable or array.
// OpenACC3.3 2.13:
// A 'var' in a 'declare' directive must be a variable or array name.
if ((CK == OpenACCClauseKind::UseDevice ||
DK == OpenACCDirectiveKind::Declare) &&
isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< (DK == OpenACCDirectiveKind::Declare);
return ExprError();
}
// Sub-arrays/subscript-exprs are fine as long as the base is a
// VarExpr/MemberExpr. So strip all of those off.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return CheckVarType(*this, CK, VarExpr, CurVarExpr);
}
// If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a
// reduction clause must be a scalar variable name, an aggregate variable
// name, an array element, or a subarray.
// If CK is a 'use_device', this also isn't valid, as it isn't the name of a
// variable or array, if not done as a member expr.
// A MemberExpr that references a Field is valid for other clauses.
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl())) {
if (DK == OpenACCDirectiveKind::Declare ||
CK == OpenACCClauseKind::Reduction ||
CK == OpenACCClauseKind::UseDevice) {
// We can allow 'member expr' if the 'this' is implicit in the case of
// declare, reduction, and use_device.
const auto *This = dyn_cast<CXXThisExpr>(ME->getBase());
if (This && This->isImplicit())
return CheckVarType(*this, CK, VarExpr, CurVarExpr);
} else {
return CheckVarType(*this, CK, VarExpr, CurVarExpr);
}
}
}
// Referring to 'this' is ok for the most part, but for 'use_device'/'declare'
// doesn't fall into 'variable or array name'
if (CK != OpenACCClauseKind::UseDevice &&
DK != OpenACCDirectiveKind::Declare && isa<CXXThisExpr>(CurVarExpr))
return CheckVarType(*this, CK, VarExpr, CurVarExpr);
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr>(CurVarExpr) ||
(CK != OpenACCClauseKind::Reduction &&
isa<CXXDependentScopeMemberExpr>(CurVarExpr)))
return CheckVarType(*this, CK, VarExpr, CurVarExpr);
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
if (DK == OpenACCDirectiveKind::Declare)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< /*declare*/ 1;
else if (CK == OpenACCClauseKind::UseDevice)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< /*use_device*/ 0;
else
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref)
<< (CK != OpenACCClauseKind::Reduction);
return ExprError();
}
ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLoc,
Expr *Length,
SourceLocation RBLoc) {
ASTContext &Context = getASTContext();
// Handle placeholders.
if (Base->hasPlaceholderType() &&
!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(LowerBound);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
LowerBound = Result.get();
}
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Length);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Length = Result.get();
}
// Check the 'base' value, it must be an array or pointer type, and not to/of
// a function type.
QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base);
QualType ResultTy;
if (!Base->isTypeDependent()) {
if (OriginalBaseTy->isAnyPointerType()) {
ResultTy = OriginalBaseTy->getPointeeType();
} else if (OriginalBaseTy->isArrayType()) {
ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType();
} else {
return ExprError(
Diag(Base->getExprLoc(), diag::err_acc_typecheck_subarray_value)
<< Base->getSourceRange());
}
if (ResultTy->isFunctionType()) {
Diag(Base->getExprLoc(), diag::err_acc_subarray_function_type)
<< ResultTy << Base->getSourceRange();
return ExprError();
}
if (SemaRef.RequireCompleteType(Base->getExprLoc(), ResultTy,
diag::err_acc_subarray_incomplete_type,
Base))
return ExprError();
if (!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
}
auto GetRecovery = [&](Expr *E, QualType Ty) {
ExprResult Recovery =
SemaRef.CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), E, Ty);
return Recovery.isUsable() ? Recovery.get() : nullptr;
};
// Ensure both of the expressions are int-exprs.
if (LowerBound && !LowerBound->isTypeDependent()) {
ExprResult LBRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
LowerBound->getExprLoc(), LowerBound);
if (LBRes.isUsable())
LBRes = SemaRef.DefaultLvalueConversion(LBRes.get());
LowerBound =
LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy);
}
if (Length && !Length->isTypeDependent()) {
ExprResult LenRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
Length->getExprLoc(), Length);
if (LenRes.isUsable())
LenRes = SemaRef.DefaultLvalueConversion(LenRes.get());
Length =
LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy);
}
// Length is required if the base type is not an array of known bounds.
if (!Length && (OriginalBaseTy.isNull() ||
(!OriginalBaseTy->isDependentType() &&
!OriginalBaseTy->isConstantArrayType() &&
!OriginalBaseTy->isDependentSizedArrayType()))) {
bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType();
SourceLocation DiagLoc = ColonLoc.isInvalid() ? LBLoc : ColonLoc;
Diag(DiagLoc, diag::err_acc_subarray_no_length) << IsArray;
// Fill in a dummy 'length' so that when we instantiate this we don't
// double-diagnose here.
ExprResult Recovery = SemaRef.CreateRecoveryExpr(
DiagLoc, SourceLocation(), ArrayRef<Expr *>(), Context.IntTy);
Length = Recovery.isUsable() ? Recovery.get() : nullptr;
}
// Check the values of each of the arguments, they cannot be negative(we
// assume), and if the array bound is known, must be within range. As we do
// so, do our best to continue with evaluation, we can set the
// value/expression to nullptr/nullopt if they are invalid, and treat them as
// not present for the rest of evaluation.
// We don't have to check for dependence, because the dependent size is
// represented as a different AST node.
std::optional<llvm::APSInt> BaseSize;
if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) {
const auto *ArrayTy = Context.getAsConstantArrayType(OriginalBaseTy);
BaseSize = ArrayTy->getSize();
}
auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> {
if (!E || E->isInstantiationDependent())
return std::nullopt;
Expr::EvalResult Res;
if (!E->EvaluateAsInt(Res, Context))
return std::nullopt;
return Res.Val.getInt();
};
std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound);
std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length);
// Check lower bound for negative or out of range.
if (LowerBoundValue.has_value()) {
if (LowerBoundValue->isNegative()) {
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_negative)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LowerBoundValue, *BaseSize) >= 0) {
// Lower bound (start index) must be less than the size of the array.
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
}
}
// Check length for negative or out of range.
if (LengthValue.has_value()) {
if (LengthValue->isNegative()) {
Diag(Length->getExprLoc(), diag::err_acc_subarray_negative)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LengthValue, *BaseSize) > 0) {
// Length must be lessthan or EQUAL to the size of the array.
Diag(Length->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
}
// Adding two APSInts requires matching sign, so extract that here.
auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt {
if (LHS.isSigned() == RHS.isSigned())
return LHS + RHS;
unsigned Width = std::max(LHS.getBitWidth(), RHS.getBitWidth()) + 1;
return llvm::APSInt(LHS.sext(Width) + RHS.sext(Width), /*Signed=*/true);
};
// If we know all 3 values, we can diagnose that the total value would be out
// of range.
if (BaseSize.has_value() && LowerBoundValue.has_value() &&
LengthValue.has_value() &&
llvm::APSInt::compareValues(AddAPSInt(*LowerBoundValue, *LengthValue),
*BaseSize) > 0) {
Diag(Base->getExprLoc(),
diag::err_acc_subarray_base_plus_length_out_of_range)
<< toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
// If any part of the expression is dependent, return a dependent sub-array.
QualType ArrayExprTy = Context.ArraySectionTy;
if (Base->isTypeDependent() ||
(LowerBound && LowerBound->isInstantiationDependent()) ||
(Length && Length->isInstantiationDependent()))
ArrayExprTy = Context.DependentTy;
return new (Context)
ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue,
OK_Ordinary, ColonLoc, RBLoc);
}
void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc,
ForStmtBeginChecker &C) {
assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?");
// Enable the while/do-while checking.
LoopInfo.TopLevelLoopSeen = true;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
// Check the format of this loop if it is affected by the collapse.
C.check();
// OpenACC 3.3 2.9.1:
// Each associated loop, except the innermost, must contain exactly one loop
// or loop nest.
// This checks for more than 1 loop at the current level, the
// 'depth'-satisifed checking manages the 'not zero' case.
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "No collapse object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
} else {
--(*CollapseInfo.CurCollapseCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*CollapseInfo.CurCollapseCount == 0)
CollapseInfo.CollapseDepthSatisfied = true;
}
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
// Check the format of this loop if it is affected by the tile.
C.check();
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "No tile object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
} else {
TileInfo.CurTileCount = *TileInfo.CurTileCount - 1;
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*TileInfo.CurTileCount == 0)
TileInfo.TileDepthSatisfied = true;
}
}
// Set this to 'false' for the body of this loop, so that the next level
// checks independently.
LoopInfo.CurLevelHasLoopAlready = false;
}
namespace {
bool isValidLoopVariableType(QualType LoopVarTy) {
// Just skip if it is dependent, it could be any of the below.
if (LoopVarTy->isDependentType())
return true;
// The loop variable must be of integer,
if (LoopVarTy->isIntegerType())
return true;
// C/C++ pointer,
if (LoopVarTy->isPointerType())
return true;
// or C++ random-access iterator type.
if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) {
// Note: Only do CXXRecordDecl because RecordDecl can't be a random access
// iterator type!
// We could either do a lot of work to see if this matches
// random-access-iterator, but it seems that just checking that the
// 'iterator_category' typedef is more than sufficient. If programmers are
// willing to lie about this, we can let them.
for (const auto *TD :
llvm::make_filter_range(RD->decls(), llvm::IsaPred<TypedefNameDecl>)) {
const auto *TDND = cast<TypedefNameDecl>(TD)->getCanonicalDecl();
if (TDND->getName() != "iterator_category")
continue;
// If there is no type for this decl, return false.
if (TDND->getUnderlyingType().isNull())
return false;
const CXXRecordDecl *ItrCategoryDecl =
TDND->getUnderlyingType()->getAsCXXRecordDecl();
// If the category isn't a record decl, it isn't the tag type.
if (!ItrCategoryDecl)
return false;
auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) {
if (RD->getName() != "random_access_iterator_tag")
return false;
// Checks just for std::random_access_iterator_tag.
return RD->getEnclosingNamespaceContext()->isStdNamespace();
};
if (IsRandomAccessIteratorTag(ItrCategoryDecl))
return true;
// We can also support tag-types inherited from the
// random_access_iterator_tag.
for (CXXBaseSpecifier BS : ItrCategoryDecl->bases())
if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl()))
return true;
return false;
}
}
return false;
}
const ValueDecl *getDeclFromExpr(const Expr *E) {
E = E->IgnoreParenImpCasts();
if (const auto *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
E = E->IgnoreParenImpCasts();
if (!E)
return nullptr;
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<ValueDecl>(DRE->getDecl());
if (const auto *ME = dyn_cast<MemberExpr>(E))
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return ME->getMemberDecl();
return nullptr;
}
} // namespace
void SemaOpenACC::ForStmtBeginChecker::checkRangeFor() {
const RangeForInfo &RFI = std::get<RangeForInfo>(Info);
// If this hasn't changed since last instantiated we're done.
if (RFI.Uninstantiated == RFI.CurrentVersion)
return;
const DeclStmt *UninstRangeStmt =
IsInstantiation ? RFI.Uninstantiated->getBeginStmt() : nullptr;
const DeclStmt *RangeStmt = RFI.CurrentVersion->getBeginStmt();
// If this isn't the first time we've checked this loop, suppress any cases
// where we previously diagnosed.
if (UninstRangeStmt) {
const ValueDecl *InitVar =
cast<ValueDecl>(UninstRangeStmt->getSingleDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
if (!isValidLoopVariableType(VarType))
return;
}
// In some dependent contexts, the autogenerated range statement doesn't get
// included until instantiation, so skip for now.
if (RangeStmt) {
const ValueDecl *InitVar = cast<ValueDecl>(RangeStmt->getSingleDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
if (!isValidLoopVariableType(VarType)) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
}
}
}
bool SemaOpenACC::ForStmtBeginChecker::checkForInit(const Stmt *InitStmt,
const ValueDecl *&InitVar,
bool Diag) {
// Init statement is required.
if (!InitStmt) {
if (Diag) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
}
auto DiagLoopVar = [this, Diag, InitStmt]() {
if (Diag) {
SemaRef.Diag(InitStmt->getBeginLoc(), diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(InitStmt))
InitStmt = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(InitStmt))
InitStmt = E->IgnoreParenImpCasts();
InitVar = nullptr;
if (const auto *BO = dyn_cast<BinaryOperator>(InitStmt)) {
// Allow assignment operator here.
if (!BO->isAssignmentOp())
return DiagLoopVar();
const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS))
InitVar = DRE->getDecl();
} else if (const auto *DS = dyn_cast<DeclStmt>(InitStmt)) {
// Allow T t = <whatever>
if (!DS->isSingleDecl())
return DiagLoopVar();
InitVar = dyn_cast<ValueDecl>(DS->getSingleDecl());
// Ensure we have an initializer, unless this is a record/dependent type.
if (InitVar) {
if (!isa<VarDecl>(InitVar))
return DiagLoopVar();
if (!InitVar->getType()->isRecordType() &&
!InitVar->getType()->isDependentType() &&
!cast<VarDecl>(InitVar)->hasInit())
return DiagLoopVar();
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(InitStmt)) {
// Allow assignment operator call.
if (CE->getOperator() != OO_Equal)
return DiagLoopVar();
const Expr *LHS = CE->getArg(0)->IgnoreParenImpCasts();
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
InitVar = DRE->getDecl();
} else if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
InitVar = ME->getMemberDecl();
}
}
// If after all of that, we haven't found a variable, give up.
if (!InitVar)
return DiagLoopVar();
InitVar = cast<ValueDecl>(InitVar->getCanonicalDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
// Since we have one, all we need to do is ensure it is the right type.
if (!isValidLoopVariableType(VarType)) {
if (Diag) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
}
return false;
}
bool SemaOpenACC::ForStmtBeginChecker::checkForCond(const Stmt *CondStmt,
const ValueDecl *InitVar,
bool Diag) {
// A condition statement is required.
if (!CondStmt) {
if (Diag) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_terminating_condition)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
}
auto DiagCondVar = [this, Diag, CondStmt] {
if (Diag) {
SemaRef.Diag(CondStmt->getBeginLoc(),
diag::err_acc_loop_terminating_condition)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(CondStmt))
CondStmt = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(CondStmt))
CondStmt = E->IgnoreParenImpCasts();
const ValueDecl *CondVar = nullptr;
if (const auto *BO = dyn_cast<BinaryOperator>(CondStmt)) {
switch (BO->getOpcode()) {
default:
return DiagCondVar();
case BO_EQ:
case BO_LT:
case BO_GT:
case BO_NE:
case BO_LE:
case BO_GE:
break;
}
// Assign the condition-var to the LHS. If it either comes back null, or
// the LHS doesn't match the InitVar, assign it to the RHS so that 5 < N is
// allowed.
CondVar = getDeclFromExpr(BO->getLHS());
if (!CondVar ||
(InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl()))
CondVar = getDeclFromExpr(BO->getRHS());
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(CondStmt)) {
// Any of the comparison ops should be ok here, but we don't know how to
// handle spaceship, so disallow for now.
if (!CE->isComparisonOp() || CE->getOperator() == OO_Spaceship)
return DiagCondVar();
// Same logic here: Assign it to the LHS, unless the LHS comes back null or
// not equal to the init var.
CondVar = getDeclFromExpr(CE->getArg(0));
if (!CondVar ||
(InitVar &&
CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl() &&
CE->getNumArgs() > 1))
CondVar = getDeclFromExpr(CE->getArg(1));
} else {
return DiagCondVar();
}
if (!CondVar)
return DiagCondVar();
// Don't consider this an error unless the init variable was properly set,
// else check to make sure they are the same variable.
if (InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl())
return DiagCondVar();
return false;
}
namespace {
// Helper to check the RHS of an assignment during for's step. We can allow
// InitVar = InitVar + N, InitVar = N + InitVar, and Initvar = Initvar - N,
// where N is an integer.
bool isValidForIncRHSAssign(const ValueDecl *InitVar, const Expr *RHS) {
auto isValid = [](const ValueDecl *InitVar, const Expr *InnerLHS,
const Expr *InnerRHS, bool IsAddition) {
// ONE of the sides has to be an integer type.
if (!InnerLHS->getType()->isIntegerType() &&
!InnerRHS->getType()->isIntegerType())
return false;
// If the init var is already an error, don't bother trying to check for
// it.
if (!InitVar)
return true;
const ValueDecl *LHSDecl = getDeclFromExpr(InnerLHS);
const ValueDecl *RHSDecl = getDeclFromExpr(InnerRHS);
// If we can't get a declaration, this is probably an error, so give up.
if (!LHSDecl || !RHSDecl)
return true;
// If the LHS is the InitVar, the other must be int, so this is valid.
if (LHSDecl->getCanonicalDecl() ==
InitVar->getCanonicalDecl())
return true;
// Subtraction doesn't allow the RHS to be init var, so this is invalid.
if (!IsAddition)
return false;
return RHSDecl->getCanonicalDecl() ==
InitVar->getCanonicalDecl();
};
if (const auto *BO = dyn_cast<BinaryOperator>(RHS)) {
BinaryOperatorKind OpC = BO->getOpcode();
if (OpC != BO_Add && OpC != BO_Sub)
return false;
return isValid(InitVar, BO->getLHS(), BO->getRHS(), OpC == BO_Add);
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(RHS)) {
OverloadedOperatorKind Op = CE->getOperator();
if (Op != OO_Plus && Op != OO_Minus)
return false;
return isValid(InitVar, CE->getArg(0), CE->getArg(1), Op == OO_Plus);
}
return false;
}
} // namespace
bool SemaOpenACC::ForStmtBeginChecker::checkForInc(const Stmt *IncStmt,
const ValueDecl *InitVar,
bool Diag) {
if (!IncStmt) {
if (Diag) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
}
auto DiagIncVar = [this, Diag, IncStmt] {
if (Diag) {
SemaRef.Diag(IncStmt->getBeginLoc(), diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(IncStmt))
IncStmt = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(IncStmt))
IncStmt = E->IgnoreParenImpCasts();
const ValueDecl *IncVar = nullptr;
// Here we enforce the monotonically increase/decrease:
if (const auto *UO = dyn_cast<UnaryOperator>(IncStmt)) {
// Allow increment/decrement ops.
if (!UO->isIncrementDecrementOp())
return DiagIncVar();
IncVar = getDeclFromExpr(UO->getSubExpr());
} else if (const auto *BO = dyn_cast<BinaryOperator>(IncStmt)) {
switch (BO->getOpcode()) {
default:
return DiagIncVar();
case BO_AddAssign:
case BO_SubAssign:
break;
case BO_Assign:
// For assignment we also allow InitVar = InitVar + N, InitVar = N +
// InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral.
if (!isValidForIncRHSAssign(InitVar, BO->getRHS()))
return DiagIncVar();
break;
}
IncVar = getDeclFromExpr(BO->getLHS());
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(IncStmt)) {
switch (CE->getOperator()) {
default:
return DiagIncVar();
case OO_PlusPlus:
case OO_MinusMinus:
case OO_PlusEqual:
case OO_MinusEqual:
break;
case OO_Equal:
// For assignment we also allow InitVar = InitVar + N, InitVar = N +
// InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral.
if (!isValidForIncRHSAssign(InitVar, CE->getArg(1)))
return DiagIncVar();
break;
}
IncVar = getDeclFromExpr(CE->getArg(0));
} else {
return DiagIncVar();
}
if (!IncVar)
return DiagIncVar();
// InitVar shouldn't be null unless there was an error, so don't diagnose if
// that is the case. Else we should ensure that it refers to the loop
// value.
if (InitVar && IncVar->getCanonicalDecl() != InitVar->getCanonicalDecl())
return DiagIncVar();
return false;
}
void SemaOpenACC::ForStmtBeginChecker::checkFor() {
const CheckForInfo &CFI = std::get<CheckForInfo>(Info);
if (!IsInstantiation) {
// If this isn't an instantiation, we can just check all of these and
// diagnose.
const ValueDecl *CurInitVar = nullptr;
checkForInit(CFI.Current.Init, CurInitVar, /*Diag=*/true);
checkForCond(CFI.Current.Condition, CurInitVar, /*Diag=*/true);
checkForInc(CFI.Current.Increment, CurInitVar, /*DIag=*/true);
} else {
const ValueDecl *UninstInitVar = nullptr;
// Checking the 'init' section first. We have to always run both versions,
// at minimum with the 'diag' off, so that we can ensure we get the correct
// instantiation var for checking by later ones.
bool UninstInitFailed =
checkForInit(CFI.Uninst.Init, UninstInitVar, /*Diag=*/false);
// VarDecls are always rebuild because they are dependent, so we can do a
// little work to suppress some of the double checking based on whether the
// type is instantiation dependent. This is imperfect, but will get us most
// cases suppressed. Currently this only handles the 'T t =' case.
auto InitChanged = [=]() {
if (CFI.Uninst.Init == CFI.Current.Init)
return false;
QualType OldVDTy;
QualType NewVDTy;
if (const auto *DS = dyn_cast<DeclStmt>(CFI.Uninst.Init))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
OldVDTy = VD->getType();
if (const auto *DS = dyn_cast<DeclStmt>(CFI.Current.Init))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
NewVDTy = VD->getType();
if (OldVDTy.isNull() || NewVDTy.isNull())
return true;
return OldVDTy->isInstantiationDependentType() !=
NewVDTy->isInstantiationDependentType();
};
// Only diagnose the new 'init' if the previous version didn't fail, AND the
// current init changed meaningfully.
bool ShouldDiagNewInit = !UninstInitFailed && InitChanged();
const ValueDecl *CurInitVar = nullptr;
checkForInit(CFI.Current.Init, CurInitVar, /*Diag=*/ShouldDiagNewInit);
// Check the condition and increment only if the previous version passed,
// and this changed.
if (CFI.Uninst.Condition != CFI.Current.Condition &&
!checkForCond(CFI.Uninst.Condition, UninstInitVar, /*Diag=*/false))
checkForCond(CFI.Current.Condition, CurInitVar, /*Diag=*/true);
if (CFI.Uninst.Increment != CFI.Current.Increment &&
!checkForInc(CFI.Uninst.Increment, UninstInitVar, /*Diag=*/false))
checkForInc(CFI.Current.Increment, CurInitVar, /*Diag=*/true);
}
}
void SemaOpenACC::ForStmtBeginChecker::check() {
// If this isn't an active loop without a seq, immediately return, nothing to
// check.
if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid)
return;
// If we've already checked, because this is a 'top level' one (and asking
// again because 'tile' and 'collapse' might apply), just return, nothing to
// do here.
if (AlreadyChecked)
return;
AlreadyChecked = true;
// OpenACC3.3 2.1:
// A loop associated with a loop construct that does not have a seq clause
// must be written to meet all the following conditions:
// - The loop variable must be of integer, C/C++ pointer, or C++ random-access
// iterator type.
// - The loop variable must monotonically increase or decrease in the
// direction of its termination condition.
// - The loop trip count must be computable in constant time when entering the
// loop construct.
//
// For a C++ range-based for loop, the loop variable
// identified by the above conditions is the internal iterator, such as a
// pointer, that the compiler generates to iterate the range. it is not the
// variable declared by the for loop.
if (std::holds_alternative<RangeForInfo>(Info))
return checkRangeFor();
return checkFor();
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst,
const Stmt *First, const Stmt *OldSecond,
const Stmt *Second, const Stmt *OldThird,
const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, OldFirst, OldSecond,
OldThird, First, Second, Third};
// Check if this is the top-level 'for' for a 'loop'. Else it will be checked
// as a part of the helper if a tile/collapse applies.
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First,
const Stmt *Second, const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, First, Second, Third};
// Check if this is the top-level 'for' for a 'loop'. Else it will be checked
// as a part of the helper if a tile/collapse applies.
if (!LoopInfo.TopLevelLoopSeen)
FSBC.check();
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *OldRangeFor,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC || OldRangeFor == nullptr || RangeFor == nullptr)
return;
ForStmtBeginChecker FSBC{*this, ForLoc,
cast_if_present<CXXForRangeStmt>(OldRangeFor),
cast_if_present<CXXForRangeStmt>(RangeFor)};
// Check if this is the top-level 'for' for a 'loop'. Else it will be checked
// as a part of the helper if a tile/collapse applies.
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC || RangeFor == nullptr)
return;
ForStmtBeginChecker FSBC = {*this, ForLoc,
cast_if_present<CXXForRangeStmt>(RangeFor)};
// Check if this is the top-level 'for' for a 'loop'. Else it will be checked
// as a part of the helper if a tile/collapse applies.
if (!LoopInfo.TopLevelLoopSeen)
FSBC.check();
ForStmtBeginHelper(ForLoc, FSBC);
}
namespace {
SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) {
// We should diagnose on anything except `CompoundStmt`, `NullStmt`,
// `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and
// `DoStmt`, as those are caught as a violation elsewhere.
// For `CompoundStmt` we need to search inside of it.
if (!CurStmt ||
isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>(
CurStmt))
return SourceLocation{};
// Any other construct is an error anyway, so it has already been diagnosed.
if (isa<OpenACCConstructStmt>(CurStmt))
return SourceLocation{};
// Search inside the compound statement, this allows for arbitrary nesting
// of compound statements, as long as there isn't any code inside.
if (const auto *CS = dyn_cast<CompoundStmt>(CurStmt)) {
for (const auto *ChildStmt : CS->children()) {
SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(ChildStmt);
if (ChildStmtLoc.isValid())
return ChildStmtLoc;
}
// Empty/not invalid compound statements are legal.
return SourceLocation{};
}
return CurStmt->getBeginLoc();
}
} // namespace
void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) {
if (!getLangOpts().OpenACC)
return;
// Set this to 'true' so if we find another one at this level we can diagnose.
LoopInfo.CurLevelHasLoopAlready = true;
if (!Body.isUsable())
return;
bool IsActiveCollapse = CollapseInfo.CurCollapseCount &&
*CollapseInfo.CurCollapseCount > 0 &&
!CollapseInfo.ActiveCollapse->hasForce();
bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0;
if (IsActiveCollapse || IsActiveTile) {
SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(Body.get());
if (OtherStmtLoc.isValid() && IsActiveCollapse) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind;
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (OtherStmtLoc.isValid() && IsActiveTile) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Tile << TileInfo.DirectiveKind;
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
}
}
namespace {
// Helper that should mirror ActOnRoutineName to get the FunctionDecl out for
// magic-static checking.
FunctionDecl *getFunctionFromRoutineName(Expr *RoutineName) {
if (!RoutineName)
return nullptr;
RoutineName = RoutineName->IgnoreParenImpCasts();
if (isa<RecoveryExpr>(RoutineName)) {
// There is nothing we can do here, this isn't a function we can count on.
return nullptr;
} else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(
RoutineName)) {
// The lookup is dependent, so we'll have to figure this out later.
return nullptr;
} else if (auto *DRE = dyn_cast<DeclRefExpr>(RoutineName)) {
ValueDecl *VD = DRE->getDecl();
if (auto *FD = dyn_cast<FunctionDecl>(VD))
return FD;
// Allow lambdas.
if (auto *VarD = dyn_cast<VarDecl>(VD)) {
QualType VarDTy = VarD->getType();
if (!VarDTy.isNull()) {
if (auto *RD = VarDTy->getAsCXXRecordDecl()) {
if (RD->isGenericLambda())
return nullptr;
if (RD->isLambda())
return RD->getLambdaCallOperator();
} else if (VarDTy->isDependentType()) {
// We don't really know what this is going to be.
return nullptr;
}
}
return nullptr;
} else if (isa<OverloadExpr>(RoutineName)) {
return nullptr;
}
}
return nullptr;
}
} // namespace
ExprResult SemaOpenACC::ActOnRoutineName(Expr *RoutineName) {
assert(RoutineName && "Routine name cannot be null here");
RoutineName = RoutineName->IgnoreParenImpCasts();
if (isa<RecoveryExpr>(RoutineName)) {
// This has already been diagnosed, so we can skip it.
return ExprError();
} else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(
RoutineName)) {
// These are dependent and we can't really check them, so delay until
// instantiation.
return RoutineName;
} else if (const auto *DRE = dyn_cast<DeclRefExpr>(RoutineName)) {
const ValueDecl *VD = DRE->getDecl();
if (isa<FunctionDecl>(VD))
return RoutineName;
// Allow lambdas.
if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
QualType VarDTy = VarD->getType();
if (!VarDTy.isNull()) {
if (const auto *RD = VarDTy->getAsCXXRecordDecl()) {
if (RD->isGenericLambda()) {
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_overload_set)
<< RoutineName;
return ExprError();
}
if (RD->isLambda())
return RoutineName;
} else if (VarDTy->isDependentType()) {
// If this is a dependent variable, it might be a lambda. So we just
// accept this and catch it next time.
return RoutineName;
}
}
}
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_not_func)
<< RoutineName;
return ExprError();
} else if (isa<OverloadExpr>(RoutineName)) {
// This happens in function templates, even when the template arguments are
// fully specified. We could possibly do some sort of matching to make sure
// that this is looked up/deduced, but GCC does not do this, so there
// doesn't seem to be a good reason for us to do it either.
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_overload_set)
<< RoutineName;
return ExprError();
}
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_not_func)
<< RoutineName;
return ExprError();
}
void SemaOpenACC::ActOnVariableDeclarator(VarDecl *VD) {
if (!getLangOpts().OpenACC || VD->isInvalidDecl() || !VD->isStaticLocal())
return;
// This cast should be safe, since a static-local can only happen in a
// function declaration.
auto *ContextDecl = cast<FunctionDecl>(getCurContext());
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
for (const auto *A : ContextDecl->attrs()) {
if (isa<OpenACCRoutineDeclAttr, OpenACCRoutineAnnotAttr>(A)) {
Diag(VD->getBeginLoc(), diag::err_acc_magic_static_in_routine);
Diag(A->getLocation(), diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return;
}
}
MagicStaticLocs.insert({ContextDecl->getCanonicalDecl(), VD->getBeginLoc()});
}
void SemaOpenACC::CheckLastRoutineDeclNameConflict(const NamedDecl *ND) {
// OpenACC 3.3 A.3.4
// When a procedure with that name is in scope and it is not the same
// procedure as the immediately following procedure declaration or
// definition, the resolution of the name can be confusing. Implementations
// should then issue a compile-time warning diagnostic even though the
// application is conforming.
// If we haven't created one, also can't diagnose.
if (!LastRoutineDecl)
return;
// If the currently created function doesn't have a name, we can't diagnose on
// a match.
if (!ND->getDeclName().isIdentifier())
return;
// If the two are in different decl contexts, it doesn't make sense to
// diagnose.
if (LastRoutineDecl->getDeclContext() != ND->getLexicalDeclContext())
return;
// If we don't have a referenced thing yet, we can't diagnose.
FunctionDecl *RoutineTarget =
getFunctionFromRoutineName(LastRoutineDecl->getFunctionReference());
if (!RoutineTarget)
return;
// If the Routine target doesn't have a name, we can't diagnose.
if (!RoutineTarget->getDeclName().isIdentifier())
return;
// Of course don't diagnose if the names don't match.
if (ND->getName() != RoutineTarget->getName())
return;
long NDLine = SemaRef.SourceMgr.getSpellingLineNumber(ND->getBeginLoc());
long LastLine =
SemaRef.SourceMgr.getSpellingLineNumber(LastRoutineDecl->getBeginLoc());
// Do some line-number math to make sure they are within a line of eachother.
// Comments or newlines can be inserted to clarify intent.
if (NDLine - LastLine > 1)
return;
// Don't warn if it actually DOES apply to this function via redecls.
if (ND->getCanonicalDecl() == RoutineTarget->getCanonicalDecl())
return;
Diag(LastRoutineDecl->getFunctionReference()->getBeginLoc(),
diag::warn_acc_confusing_routine_name);
Diag(RoutineTarget->getBeginLoc(), diag::note_previous_decl) << ND;
}
void SemaOpenACC::ActOnVariableInit(VarDecl *VD, QualType InitType) {
if (!VD || !getLangOpts().OpenACC || InitType.isNull())
return;
// To avoid double-diagnostic, just diagnose this during instantiation. We'll
// get 1 warning per instantiation, but this permits us to be more sensible
// for cases where the lookup is confusing.
if (VD->getLexicalDeclContext()->isDependentContext())
return;
const auto *RD = InitType->getAsCXXRecordDecl();
// If this isn't a lambda, no sense in diagnosing.
if (!RD || !RD->isLambda())
return;
CheckLastRoutineDeclNameConflict(VD);
}
void SemaOpenACC::ActOnFunctionDeclarator(FunctionDecl *FD) {
if (!FD || !getLangOpts().OpenACC)
return;
CheckLastRoutineDeclNameConflict(FD);
}
bool SemaOpenACC::ActOnStartStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
// Declaration directives an appear in a statement location, so call into that
// function here.
if (K == OpenACCDirectiveKind::Declare || K == OpenACCDirectiveKind::Routine)
return ActOnStartDeclDirective(K, StartLoc, Clauses);
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
// OpenACC 3.3 2.9.1:
// Intervening code must not contain other OpenACC directives or calls to API
// routines.
//
// ALL constructs are ill-formed if there is an active 'collapse'
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse << K;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile << K;
assert(TileInfo.ActiveTile && "Tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
if (DiagnoseRequiredClauses(K, StartLoc, Clauses))
return true;
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/true);
}
StmtResult SemaOpenACC::ActOnEndStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs,
OpenACCAtomicKind AtomicKind, SourceLocation RParenLoc,
SourceLocation EndLoc, ArrayRef<OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
case OpenACCDirectiveKind::Invalid:
return StmtError();
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels: {
return OpenACCComputeConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop: {
return OpenACCCombinedConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Loop: {
return OpenACCLoopConstruct::Create(
getASTContext(), ActiveComputeConstructInfo.Kind, StartLoc, DirLoc,
EndLoc, Clauses, AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Data: {
return OpenACCDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::EnterData: {
return OpenACCEnterDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::ExitData: {
return OpenACCExitDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::HostData: {
return OpenACCHostDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Wait: {
return OpenACCWaitConstruct::Create(
getASTContext(), StartLoc, DirLoc, LParenLoc, Exprs.front(), MiscLoc,
Exprs.drop_front(), RParenLoc, EndLoc, Clauses);
}
case OpenACCDirectiveKind::Init: {
return OpenACCInitConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Shutdown: {
return OpenACCShutdownConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Set: {
return OpenACCSetConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Update: {
return OpenACCUpdateConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Atomic: {
return OpenACCAtomicConstruct::Create(
getASTContext(), StartLoc, DirLoc, AtomicKind, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Cache: {
assert(Clauses.empty() && "Cache doesn't allow clauses");
return OpenACCCacheConstruct::Create(getASTContext(), StartLoc, DirLoc,
LParenLoc, MiscLoc, Exprs, RParenLoc,
EndLoc);
}
case OpenACCDirectiveKind::Routine:
llvm_unreachable("routine shouldn't handled here");
case OpenACCDirectiveKind::Declare: {
// Declare and routine arei declaration directives, but can be used here as
// long as we wrap it in a DeclStmt. So make sure we do that here.
DeclGroupRef DR = ActOnEndDeclDirective(K, StartLoc, DirLoc, LParenLoc,
RParenLoc, EndLoc, Clauses);
return SemaRef.ActOnDeclStmt(DeclGroupPtrTy::make(DR), StartLoc, EndLoc);
}
}
llvm_unreachable("Unhandled case in directive handling?");
}
StmtResult SemaOpenACC::ActOnAssociatedStmt(
SourceLocation DirectiveLoc, OpenACCDirectiveKind K,
OpenACCAtomicKind AtKind, ArrayRef<const OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
default:
llvm_unreachable("Unimplemented associated statement application");
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Cache:
llvm_unreachable(
"these don't have associated statements, so shouldn't get here");
case OpenACCDirectiveKind::Atomic:
return CheckAtomicAssociatedStmt(DirectiveLoc, AtKind, AssocStmt);
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
// There really isn't any checking here that could happen. As long as we
// have a statement to associate, this should be fine.
// OpenACC 3.3 Section 6:
// Structured Block: in C or C++, an executable statement, possibly
// compound, with a single entry at the top and a single exit at the
// bottom.
// FIXME: Should we reject DeclStmt's here? The standard isn't clear, and
// an interpretation of it is to allow this and treat the initializer as
// the 'structured block'.
return AssocStmt;
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
if (!AssocStmt.isUsable())
return StmtError();
if (!isa<CXXForRangeStmt, ForStmt>(AssocStmt.get())) {
Diag(AssocStmt.get()->getBeginLoc(), diag::err_acc_loop_not_for_loop)
<< K;
Diag(DirectiveLoc, diag::note_acc_construct_here) << K;
return StmtError();
}
if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) {
if (!CollapseInfo.CollapseDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (!TileInfo.TileDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "Collapse count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
return StmtError();
}
return AssocStmt.get();
}
llvm_unreachable("Invalid associated statement application");
}
namespace {
// Routine has some pretty complicated set of rules for how device_type
// interacts with 'gang', 'worker', 'vector', and 'seq'. Enforce part of it
// here.
bool CheckValidRoutineGangWorkerVectorSeqClauses(
SemaOpenACC &SemaRef, SourceLocation DirectiveLoc,
ArrayRef<const OpenACCClause *> Clauses) {
auto RequiredPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause,
OpenACCVectorClause, OpenACCSeqClause>;
// The clause handling has assured us that there is no duplicates. That is,
// if there is 1 before a device_type, there are none after a device_type.
// If not, there is at most 1 applying to each device_type.
// What is left to legalize is that either:
// 1- there is 1 before the first device_type.
// 2- there is 1 AFTER each device_type.
auto *FirstDeviceType =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCDeviceTypeClause>);
// If there is 1 before the first device_type (or at all if no device_type),
// we are legal.
auto *ClauseItr =
std::find_if(Clauses.begin(), FirstDeviceType, RequiredPred);
if (ClauseItr != FirstDeviceType)
return false;
// If there IS no device_type, and no clause, diagnose.
if (FirstDeviceType == Clauses.end())
return SemaRef.Diag(DirectiveLoc, diag::err_acc_construct_one_clause_of)
<< OpenACCDirectiveKind::Routine
<< "'gang', 'seq', 'vector', or 'worker'";
// Else, we have to check EACH device_type group. PrevDeviceType is the
// device-type before the current group.
auto *PrevDeviceType = FirstDeviceType;
while (PrevDeviceType != Clauses.end()) {
auto *NextDeviceType =
std::find_if(std::next(PrevDeviceType), Clauses.end(),
llvm::IsaPred<OpenACCDeviceTypeClause>);
ClauseItr = std::find_if(PrevDeviceType, NextDeviceType, RequiredPred);
if (ClauseItr == NextDeviceType)
return SemaRef.Diag((*PrevDeviceType)->getBeginLoc(),
diag::err_acc_clause_routine_one_of_in_region);
PrevDeviceType = NextDeviceType;
}
return false;
}
} // namespace
bool SemaOpenACC::ActOnStartDeclDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
// OpenCC3.3 2.1 (line 889)
// A program must not depend on the order of evaluation of expressions in
// clause arguments or on any side effects of the evaluations.
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
if (DiagnoseRequiredClauses(K, StartLoc, Clauses))
return true;
if (K == OpenACCDirectiveKind::Routine &&
CheckValidRoutineGangWorkerVectorSeqClauses(*this, StartLoc, Clauses))
return true;
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/false);
}
DeclGroupRef SemaOpenACC::ActOnEndDeclDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation RParenLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
return DeclGroupRef{};
case OpenACCDirectiveKind::Declare: {
// OpenACC3.3 2.13: At least one clause must appear on a declare directive.
if (Clauses.empty()) {
Diag(EndLoc, diag::err_acc_declare_required_clauses);
// No reason to add this to the AST, as we would just end up trying to
// instantiate this, which would double-diagnose here, which we wouldn't
// want to do.
return DeclGroupRef{};
}
auto *DeclareDecl = OpenACCDeclareDecl::Create(
getASTContext(), getCurContext(), StartLoc, DirLoc, EndLoc, Clauses);
DeclareDecl->setAccess(AS_public);
getCurContext()->addDecl(DeclareDecl);
return DeclGroupRef{DeclareDecl};
}
case OpenACCDirectiveKind::Routine:
llvm_unreachable("routine shouldn't be handled here");
}
llvm_unreachable("unhandled case in directive handling?");
}
namespace {
// Given the decl on the next line, figure out if it is one that is acceptable
// to `routine`, or looks like the sort of decl we should be diagnosing against.
FunctionDecl *LegalizeNextParsedDecl(Decl *D) {
if (!D)
return nullptr;
// Functions are per-fact acceptable as-is.
if (auto *FD = dyn_cast<FunctionDecl>(D))
return FD;
// Function templates are functions, so attach to the templated decl.
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D))
return FTD->getTemplatedDecl();
if (auto *FD = dyn_cast<FieldDecl>(D)) {
auto *RD =
FD->getType().isNull() ? nullptr : FD->getType()->getAsCXXRecordDecl();
if (RD && RD->isGenericLambda())
return RD->getDependentLambdaCallOperator()->getTemplatedDecl();
if (RD && RD->isLambda())
return RD->getLambdaCallOperator();
}
// VarDecl we can look at the init instead of the type of the variable, this
// makes us more tolerant of the 'auto' deduced type.
if (auto *VD = dyn_cast<VarDecl>(D)) {
Expr *Init = VD->getInit();
if (!Init || Init->getType().isNull())
return nullptr;
const auto *RD = Init->getType()->getAsCXXRecordDecl();
if (RD && RD->isGenericLambda())
return RD->getDependentLambdaCallOperator()->getTemplatedDecl();
if (RD && RD->isLambda())
return RD->getLambdaCallOperator();
// FIXME: We could try harder in the case where this is a dependent thing
// that ends up being a lambda (that is, the init is an unresolved lookup
// expr), but we can't attach to the call/lookup expr. If we instead try to
// attach to the VarDecl, when we go to instantiate it, attributes are
// instantiated before the init, so we can't actually see the type at any
// point where it would be relevant/able to be checked. We could perhaps do
// some sort of 'after-init' instantiation/checking here, but that doesn't
// seem valuable for a situation that other compilers don't handle.
}
return nullptr;
}
void CreateRoutineDeclAttr(SemaOpenACC &SemaRef, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> Clauses,
ValueDecl *AddTo) {
OpenACCRoutineDeclAttr *A =
OpenACCRoutineDeclAttr::Create(SemaRef.getASTContext(), DirLoc);
A->Clauses.assign(Clauses.begin(), Clauses.end());
AddTo->addAttr(A);
}
} // namespace
// Variant that adds attributes, because this is the unnamed case.
void SemaOpenACC::CheckRoutineDecl(SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> Clauses,
Decl *NextParsedDecl) {
FunctionDecl *NextParsedFDecl = LegalizeNextParsedDecl(NextParsedDecl);
if (!NextParsedFDecl) {
// If we don't have a valid 'next thing', just diagnose.
SemaRef.Diag(DirLoc, diag::err_acc_decl_for_routine);
return;
}
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
if (auto Itr = MagicStaticLocs.find(NextParsedFDecl->getCanonicalDecl());
Itr != MagicStaticLocs.end()) {
Diag(Itr->second, diag::err_acc_magic_static_in_routine);
Diag(DirLoc, diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return;
}
auto BindItr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCBindClause>);
for (auto *A : NextParsedFDecl->attrs()) {
// OpenACC 3.3 2.15:
// If a procedure has a bind clause on both the declaration and definition
// than they both must bind to the same name.
if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(A)) {
auto OtherBindItr =
llvm::find_if(RA->Clauses, llvm::IsaPred<OpenACCBindClause>);
if (OtherBindItr != RA->Clauses.end() &&
(*cast<OpenACCBindClause>(*BindItr)) !=
(*cast<OpenACCBindClause>(*OtherBindItr))) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_unnamed_bind);
Diag((*OtherBindItr)->getEndLoc(), diag::note_acc_previous_clause_here)
<< (*BindItr)->getClauseKind();
return;
}
}
// OpenACC 3.3 2.15:
// A bind clause may not bind to a routine name that has a visible bind
// clause.
// We take the combo of these two 2.15 restrictions to mean that the
// 'declaration'/'definition' quote is an exception to this. So we're going
// to disallow mixing of the two types entirely.
if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(A);
RA && RA->getRange().getEnd().isValid()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag(RA->getRange().getEnd(), diag::note_acc_previous_clause_here)
<< "bind";
return;
}
}
CreateRoutineDeclAttr(*this, DirLoc, Clauses, NextParsedFDecl);
}
// Variant that adds a decl, because this is the named case.
OpenACCRoutineDecl *SemaOpenACC::CheckRoutineDecl(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *FuncRef, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc) {
assert(LParenLoc.isValid());
if (FunctionDecl *FD = getFunctionFromRoutineName(FuncRef)) {
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
if (auto Itr = MagicStaticLocs.find(FD->getCanonicalDecl());
Itr != MagicStaticLocs.end()) {
Diag(Itr->second, diag::err_acc_magic_static_in_routine);
Diag(DirLoc, diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return nullptr;
}
// OpenACC 3.3 2.15:
// A bind clause may not bind to a routine name that has a visible bind
// clause.
auto BindItr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCBindClause>);
SourceLocation BindLoc;
if (BindItr != Clauses.end()) {
BindLoc = (*BindItr)->getBeginLoc();
// Since this is adding a 'named' routine, we aren't allowed to combine
// with ANY other visible bind clause. Error if we see either.
for (auto *A : FD->attrs()) {
if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(A)) {
auto OtherBindItr =
llvm::find_if(RA->Clauses, llvm::IsaPred<OpenACCBindClause>);
if (OtherBindItr != RA->Clauses.end()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag((*OtherBindItr)->getEndLoc(),
diag::note_acc_previous_clause_here)
<< (*BindItr)->getClauseKind();
return nullptr;
}
}
if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(A);
RA && RA->getRange().getEnd().isValid()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag(RA->getRange().getEnd(), diag::note_acc_previous_clause_here)
<< (*BindItr)->getClauseKind();
return nullptr;
}
}
}
// Set the end-range to the 'bind' clause here, so we can look it up
// later.
auto *RAA = OpenACCRoutineAnnotAttr::CreateImplicit(getASTContext(),
{DirLoc, BindLoc});
FD->addAttr(RAA);
// In case we are referencing not the 'latest' version, make sure we add
// the attribute to all declarations.
while (FD != FD->getMostRecentDecl()) {
FD = FD->getMostRecentDecl();
FD->addAttr(RAA);
}
}
LastRoutineDecl = OpenACCRoutineDecl::Create(
getASTContext(), getCurContext(), StartLoc, DirLoc, LParenLoc, FuncRef,
RParenLoc, EndLoc, Clauses);
LastRoutineDecl->setAccess(AS_public);
getCurContext()->addDecl(LastRoutineDecl);
return LastRoutineDecl;
}
DeclGroupRef SemaOpenACC::ActOnEndRoutineDeclDirective(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *ReferencedFunc, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc,
DeclGroupPtrTy NextDecl) {
assert((!ReferencedFunc || !NextDecl) &&
"Only one of these should be filled");
if (LParenLoc.isInvalid()) {
Decl *NextLineDecl = nullptr;
if (NextDecl && NextDecl.get().isSingleDecl())
NextLineDecl = NextDecl.get().getSingleDecl();
CheckRoutineDecl(DirLoc, Clauses, NextLineDecl);
return NextDecl.get();
}
return DeclGroupRef{CheckRoutineDecl(
StartLoc, DirLoc, LParenLoc, ReferencedFunc, RParenLoc, Clauses, EndLoc)};
}
StmtResult SemaOpenACC::ActOnEndRoutineStmtDirective(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *ReferencedFunc, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc,
Stmt *NextStmt) {
assert((!ReferencedFunc || !NextStmt) &&
"Only one of these should be filled");
if (LParenLoc.isInvalid()) {
Decl *NextLineDecl = nullptr;
if (NextStmt)
if (DeclStmt *DS = dyn_cast<DeclStmt>(NextStmt); DS && DS->isSingleDecl())
NextLineDecl = DS->getSingleDecl();
CheckRoutineDecl(DirLoc, Clauses, NextLineDecl);
return NextStmt;
}
DeclGroupRef DR{CheckRoutineDecl(StartLoc, DirLoc, LParenLoc, ReferencedFunc,
RParenLoc, Clauses, EndLoc)};
return SemaRef.ActOnDeclStmt(DeclGroupPtrTy::make(DR), StartLoc, EndLoc);
}
OpenACCRoutineDeclAttr *
SemaOpenACC::mergeRoutineDeclAttr(const OpenACCRoutineDeclAttr &Old) {
OpenACCRoutineDeclAttr *New =
OpenACCRoutineDeclAttr::Create(getASTContext(), Old.getLocation());
// We should jsut be able to copy these, there isn't really any
// merging/inheriting we have to do, so no worry about doing a deep copy.
New->Clauses = Old.Clauses;
return New;
}
ExprResult
SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return OpenACCAsteriskSizeExpr::Create(getASTContext(), AsteriskLoc);
}
ExprResult
SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return BuildOpenACCAsteriskSizeExpr(AsteriskLoc);
}
|