1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
//===--- HeuristicResolver.cpp ---------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/HeuristicResolver.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/identity.h"
namespace clang {
namespace {
// Helper class for implementing HeuristicResolver.
// Unlike HeuristicResolver which is a long-lived class,
// a new instance of this class is created for every external
// call into a HeuristicResolver operation. That allows this
// class to store state that's local to such a top-level call,
// particularly "recursion protection sets" that keep track of
// nodes that have already been seen to avoid infinite recursion.
class HeuristicResolverImpl {
public:
HeuristicResolverImpl(ASTContext &Ctx) : Ctx(Ctx) {}
// These functions match the public interface of HeuristicResolver
// (but aren't const since they may modify the recursion protection sets).
std::vector<const NamedDecl *>
resolveMemberExpr(const CXXDependentScopeMemberExpr *ME);
std::vector<const NamedDecl *>
resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE);
std::vector<const NamedDecl *> resolveTypeOfCallExpr(const CallExpr *CE);
std::vector<const NamedDecl *> resolveCalleeOfCallExpr(const CallExpr *CE);
std::vector<const NamedDecl *>
resolveUsingValueDecl(const UnresolvedUsingValueDecl *UUVD);
std::vector<const NamedDecl *>
resolveDependentNameType(const DependentNameType *DNT);
std::vector<const NamedDecl *> resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST);
QualType resolveNestedNameSpecifierToType(const NestedNameSpecifier *NNS);
QualType getPointeeType(QualType T);
std::vector<const NamedDecl *>
lookupDependentName(CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
TagDecl *resolveTypeToTagDecl(QualType T);
QualType simplifyType(QualType Type, const Expr *E, bool UnwrapPointer);
FunctionProtoTypeLoc getFunctionProtoTypeLoc(const Expr *Fn);
private:
ASTContext &Ctx;
// Recursion protection sets
llvm::SmallSet<const DependentNameType *, 4> SeenDependentNameTypes;
// Given a tag-decl type and a member name, heuristically resolve the
// name to one or more declarations.
// The current heuristic is simply to look up the name in the primary
// template. This is a heuristic because the template could potentially
// have specializations that declare different members.
// Multiple declarations could be returned if the name is overloaded
// (e.g. an overloaded method in the primary template).
// This heuristic will give the desired answer in many cases, e.g.
// for a call to vector<T>::size().
std::vector<const NamedDecl *>
resolveDependentMember(QualType T, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
// Try to heuristically resolve the type of a possibly-dependent expression
// `E`.
QualType resolveExprToType(const Expr *E);
std::vector<const NamedDecl *> resolveExprToDecls(const Expr *E);
bool findOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
DeclarationName Name);
};
// Convenience lambdas for use as the 'Filter' parameter of
// HeuristicResolver::resolveDependentMember().
const auto NoFilter = [](const NamedDecl *D) { return true; };
const auto NonStaticFilter = [](const NamedDecl *D) {
return D->isCXXInstanceMember();
};
const auto StaticFilter = [](const NamedDecl *D) {
return !D->isCXXInstanceMember();
};
const auto ValueFilter = [](const NamedDecl *D) { return isa<ValueDecl>(D); };
const auto TypeFilter = [](const NamedDecl *D) { return isa<TypeDecl>(D); };
const auto TemplateFilter = [](const NamedDecl *D) {
return isa<TemplateDecl>(D);
};
QualType resolveDeclsToType(const std::vector<const NamedDecl *> &Decls,
ASTContext &Ctx) {
if (Decls.size() != 1) // Names an overload set -- just bail.
return QualType();
if (const auto *TD = dyn_cast<TypeDecl>(Decls[0])) {
return Ctx.getTypeDeclType(TD);
}
if (const auto *VD = dyn_cast<ValueDecl>(Decls[0])) {
return VD->getType();
}
return QualType();
}
TemplateName getReferencedTemplateName(const Type *T) {
if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
return TST->getTemplateName();
}
if (const auto *DTST = T->getAs<DeducedTemplateSpecializationType>()) {
return DTST->getTemplateName();
}
return TemplateName();
}
// Helper function for HeuristicResolver::resolveDependentMember()
// which takes a possibly-dependent type `T` and heuristically
// resolves it to a CXXRecordDecl in which we can try name lookup.
TagDecl *HeuristicResolverImpl::resolveTypeToTagDecl(QualType QT) {
const Type *T = QT.getTypePtrOrNull();
if (!T)
return nullptr;
// Unwrap type sugar such as type aliases.
T = T->getCanonicalTypeInternal().getTypePtr();
if (const auto *DNT = T->getAs<DependentNameType>()) {
T = resolveDeclsToType(resolveDependentNameType(DNT), Ctx)
.getTypePtrOrNull();
if (!T)
return nullptr;
T = T->getCanonicalTypeInternal().getTypePtr();
}
if (auto *TT = T->getAs<TagType>()) {
TagDecl *TD = TT->getDecl();
// Template might not be instantiated yet, fall back to primary template
// in such cases.
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
if (CTSD->getTemplateSpecializationKind() == TSK_Undeclared) {
return CTSD->getSpecializedTemplate()->getTemplatedDecl();
}
}
return TD;
}
if (const auto *ICNT = T->getAs<InjectedClassNameType>())
T = ICNT->getInjectedSpecializationType().getTypePtrOrNull();
if (!T)
return nullptr;
TemplateName TN = getReferencedTemplateName(T);
if (TN.isNull())
return nullptr;
const ClassTemplateDecl *TD =
dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
if (!TD)
return nullptr;
return TD->getTemplatedDecl();
}
QualType HeuristicResolverImpl::getPointeeType(QualType T) {
if (T.isNull())
return QualType();
if (T->isPointerType())
return T->castAs<PointerType>()->getPointeeType();
// Try to handle smart pointer types.
// Look up operator-> in the primary template. If we find one, it's probably a
// smart pointer type.
auto ArrowOps = resolveDependentMember(
T, Ctx.DeclarationNames.getCXXOperatorName(OO_Arrow), NonStaticFilter);
if (ArrowOps.empty())
return QualType();
// Getting the return type of the found operator-> method decl isn't useful,
// because we discarded template arguments to perform lookup in the primary
// template scope, so the return type would just have the form U* where U is a
// template parameter type.
// Instead, just handle the common case where the smart pointer type has the
// form of SmartPtr<X, ...>, and assume X is the pointee type.
auto *TST = T->getAs<TemplateSpecializationType>();
if (!TST)
return QualType();
if (TST->template_arguments().size() == 0)
return QualType();
const TemplateArgument &FirstArg = TST->template_arguments()[0];
if (FirstArg.getKind() != TemplateArgument::Type)
return QualType();
return FirstArg.getAsType();
}
QualType HeuristicResolverImpl::simplifyType(QualType Type, const Expr *E,
bool UnwrapPointer) {
bool DidUnwrapPointer = false;
// A type, together with an optional expression whose type it represents
// which may have additional information about the expression's type
// not stored in the QualType itself.
struct TypeExprPair {
QualType Type;
const Expr *E = nullptr;
};
TypeExprPair Current{Type, E};
auto SimplifyOneStep = [UnwrapPointer, &DidUnwrapPointer,
this](TypeExprPair T) -> TypeExprPair {
if (UnwrapPointer) {
if (QualType Pointee = getPointeeType(T.Type); !Pointee.isNull()) {
DidUnwrapPointer = true;
return {Pointee};
}
}
if (const auto *RT = T.Type->getAs<ReferenceType>()) {
// Does not count as "unwrap pointer".
return {RT->getPointeeType()};
}
if (const auto *BT = T.Type->getAs<BuiltinType>()) {
// If BaseType is the type of a dependent expression, it's just
// represented as BuiltinType::Dependent which gives us no information. We
// can get further by analyzing the dependent expression.
if (T.E && BT->getKind() == BuiltinType::Dependent) {
return {resolveExprToType(T.E), T.E};
}
}
if (const auto *AT = T.Type->getContainedAutoType()) {
// If T contains a dependent `auto` type, deduction will not have
// been performed on it yet. In simple cases (e.g. `auto` variable with
// initializer), get the approximate type that would result from
// deduction.
// FIXME: A more accurate implementation would propagate things like the
// `const` in `const auto`.
if (T.E && AT->isUndeducedAutoType()) {
if (const auto *DRE = dyn_cast<DeclRefExpr>(T.E)) {
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
if (auto *Init = VD->getInit())
return {resolveExprToType(Init), Init};
}
}
}
}
if (const auto *TTPT = dyn_cast_if_present<TemplateTypeParmType>(T.Type)) {
// We can't do much useful with a template parameter (e.g. we cannot look
// up member names inside it). However, if the template parameter has a
// default argument, as a heuristic we can replace T with the default
// argument type.
if (const auto *TTPD = TTPT->getDecl()) {
if (TTPD->hasDefaultArgument()) {
const auto &DefaultArg = TTPD->getDefaultArgument().getArgument();
if (DefaultArg.getKind() == TemplateArgument::Type) {
return {DefaultArg.getAsType()};
}
}
}
}
return T;
};
// As an additional protection against infinite loops, bound the number of
// simplification steps.
size_t StepCount = 0;
const size_t MaxSteps = 64;
while (!Current.Type.isNull() && StepCount++ < MaxSteps) {
TypeExprPair New = SimplifyOneStep(Current);
if (New.Type == Current.Type)
break;
Current = New;
}
if (UnwrapPointer && !DidUnwrapPointer)
return QualType();
return Current.Type;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveMemberExpr(
const CXXDependentScopeMemberExpr *ME) {
// If the expression has a qualifier, try resolving the member inside the
// qualifier's type.
// Note that we cannot use a NonStaticFilter in either case, for a couple
// of reasons:
// 1. It's valid to access a static member using instance member syntax,
// e.g. `instance.static_member`.
// 2. We can sometimes get a CXXDependentScopeMemberExpr for static
// member syntax too, e.g. if `X::static_member` occurs inside
// an instance method, it's represented as a CXXDependentScopeMemberExpr
// with `this` as the base expression as `X` as the qualifier
// (which could be valid if `X` names a base class after instantiation).
if (NestedNameSpecifier *NNS = ME->getQualifier()) {
if (QualType QualifierType = resolveNestedNameSpecifierToType(NNS);
!QualifierType.isNull()) {
auto Decls =
resolveDependentMember(QualifierType, ME->getMember(), NoFilter);
if (!Decls.empty())
return Decls;
}
// Do not proceed to try resolving the member in the expression's base type
// without regard to the qualifier, as that could produce incorrect results.
// For example, `void foo() { this->Base::foo(); }` shouldn't resolve to
// foo() itself!
return {};
}
// Try resolving the member inside the expression's base type.
Expr *Base = ME->isImplicitAccess() ? nullptr : ME->getBase();
QualType BaseType = ME->getBaseType();
BaseType = simplifyType(BaseType, Base, ME->isArrow());
return resolveDependentMember(BaseType, ME->getMember(), NoFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE) {
QualType Qualifier = resolveNestedNameSpecifierToType(RE->getQualifier());
Qualifier = simplifyType(Qualifier, nullptr, /*UnwrapPointer=*/false);
return resolveDependentMember(Qualifier, RE->getDeclName(), StaticFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveTypeOfCallExpr(const CallExpr *CE) {
QualType CalleeType = resolveExprToType(CE->getCallee());
if (CalleeType.isNull())
return {};
if (const auto *FnTypePtr = CalleeType->getAs<PointerType>())
CalleeType = FnTypePtr->getPointeeType();
if (const FunctionType *FnType = CalleeType->getAs<FunctionType>()) {
if (const auto *D = resolveTypeToTagDecl(FnType->getReturnType())) {
return {D};
}
}
return {};
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveCalleeOfCallExpr(const CallExpr *CE) {
if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
return {ND};
}
return resolveExprToDecls(CE->getCallee());
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveUsingValueDecl(
const UnresolvedUsingValueDecl *UUVD) {
return resolveDependentMember(QualType(UUVD->getQualifier()->getAsType(), 0),
UUVD->getNameInfo().getName(), ValueFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveDependentNameType(const DependentNameType *DNT) {
if (auto [_, inserted] = SeenDependentNameTypes.insert(DNT); !inserted)
return {};
return resolveDependentMember(
resolveNestedNameSpecifierToType(DNT->getQualifier()),
DNT->getIdentifier(), TypeFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST) {
const DependentTemplateStorage &DTN = DTST->getDependentTemplateName();
return resolveDependentMember(
resolveNestedNameSpecifierToType(DTN.getQualifier()),
DTN.getName().getIdentifier(), TemplateFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveExprToDecls(const Expr *E) {
if (const auto *ME = dyn_cast<CXXDependentScopeMemberExpr>(E)) {
return resolveMemberExpr(ME);
}
if (const auto *RE = dyn_cast<DependentScopeDeclRefExpr>(E)) {
return resolveDeclRefExpr(RE);
}
if (const auto *OE = dyn_cast<OverloadExpr>(E)) {
return {OE->decls_begin(), OE->decls_end()};
}
if (const auto *CE = dyn_cast<CallExpr>(E)) {
return resolveTypeOfCallExpr(CE);
}
if (const auto *ME = dyn_cast<MemberExpr>(E))
return {ME->getMemberDecl()};
return {};
}
QualType HeuristicResolverImpl::resolveExprToType(const Expr *E) {
std::vector<const NamedDecl *> Decls = resolveExprToDecls(E);
if (!Decls.empty())
return resolveDeclsToType(Decls, Ctx);
return E->getType();
}
QualType HeuristicResolverImpl::resolveNestedNameSpecifierToType(
const NestedNameSpecifier *NNS) {
if (!NNS)
return QualType();
// The purpose of this function is to handle the dependent (Kind ==
// Identifier) case, but we need to recurse on the prefix because
// that may be dependent as well, so for convenience handle
// the TypeSpec cases too.
switch (NNS->getKind()) {
case NestedNameSpecifier::TypeSpec:
return QualType(NNS->getAsType(), 0);
case NestedNameSpecifier::Identifier: {
return resolveDeclsToType(
resolveDependentMember(
resolveNestedNameSpecifierToType(NNS->getPrefix()),
NNS->getAsIdentifier(), TypeFilter),
Ctx);
}
default:
break;
}
return QualType();
}
bool isOrdinaryMember(const NamedDecl *ND) {
return ND->isInIdentifierNamespace(Decl::IDNS_Ordinary | Decl::IDNS_Tag |
Decl::IDNS_Member);
}
bool findOrdinaryMember(const CXXRecordDecl *RD, CXXBasePath &Path,
DeclarationName Name) {
Path.Decls = RD->lookup(Name).begin();
for (DeclContext::lookup_iterator I = Path.Decls, E = I.end(); I != E; ++I)
if (isOrdinaryMember(*I))
return true;
return false;
}
bool HeuristicResolverImpl::findOrdinaryMemberInDependentClasses(
const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
DeclarationName Name) {
TagDecl *TD = resolveTypeToTagDecl(Specifier->getType());
if (const auto *RD = dyn_cast_if_present<CXXRecordDecl>(TD)) {
return findOrdinaryMember(RD, Path, Name);
}
return false;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::lookupDependentName(
CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
std::vector<const NamedDecl *> Results;
// Lookup in the class.
bool AnyOrdinaryMembers = false;
for (const NamedDecl *ND : RD->lookup(Name)) {
if (isOrdinaryMember(ND))
AnyOrdinaryMembers = true;
if (Filter(ND))
Results.push_back(ND);
}
if (AnyOrdinaryMembers)
return Results;
// Perform lookup into our base classes.
CXXBasePaths Paths;
Paths.setOrigin(RD);
if (!RD->lookupInBases(
[&](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
return findOrdinaryMemberInDependentClasses(Specifier, Path, Name);
},
Paths, /*LookupInDependent=*/true))
return Results;
for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
I != E; ++I) {
if (isOrdinaryMember(*I) && Filter(*I))
Results.push_back(*I);
}
return Results;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveDependentMember(
QualType QT, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
TagDecl *TD = resolveTypeToTagDecl(QT);
if (!TD)
return {};
if (auto *ED = dyn_cast<EnumDecl>(TD)) {
auto Result = ED->lookup(Name);
return {Result.begin(), Result.end()};
}
if (auto *RD = dyn_cast<CXXRecordDecl>(TD)) {
if (!RD->hasDefinition())
return {};
RD = RD->getDefinition();
return lookupDependentName(RD, Name, [&](const NamedDecl *ND) {
if (!Filter(ND))
return false;
if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) {
return !MD->isInstance() ||
MD->getMethodQualifiers().compatiblyIncludes(QT.getQualifiers(),
Ctx);
}
return true;
});
}
return {};
}
FunctionProtoTypeLoc
HeuristicResolverImpl::getFunctionProtoTypeLoc(const Expr *Fn) {
TypeLoc Target;
const Expr *NakedFn = Fn->IgnoreParenCasts();
if (const auto *T = NakedFn->getType().getTypePtr()->getAs<TypedefType>()) {
Target = T->getDecl()->getTypeSourceInfo()->getTypeLoc();
} else if (const auto *DR = dyn_cast<DeclRefExpr>(NakedFn)) {
const auto *D = DR->getDecl();
if (const auto *const VD = dyn_cast<VarDecl>(D)) {
Target = VD->getTypeSourceInfo()->getTypeLoc();
}
} else if (const auto *ME = dyn_cast<MemberExpr>(NakedFn)) {
const auto *MD = ME->getMemberDecl();
if (const auto *FD = dyn_cast<FieldDecl>(MD)) {
Target = FD->getTypeSourceInfo()->getTypeLoc();
}
}
if (!Target)
return {};
// Unwrap types that may be wrapping the function type
while (true) {
if (auto P = Target.getAs<PointerTypeLoc>()) {
Target = P.getPointeeLoc();
continue;
}
if (auto A = Target.getAs<AttributedTypeLoc>()) {
Target = A.getModifiedLoc();
continue;
}
if (auto P = Target.getAs<ParenTypeLoc>()) {
Target = P.getInnerLoc();
continue;
}
break;
}
if (auto F = Target.getAs<FunctionProtoTypeLoc>()) {
// In some edge cases the AST can contain a "trivial" FunctionProtoTypeLoc
// which has null parameters. Avoid these as they don't contain useful
// information.
if (llvm::all_of(F.getParams(), llvm::identity<ParmVarDecl *>()))
return F;
}
return {};
}
} // namespace
std::vector<const NamedDecl *> HeuristicResolver::resolveMemberExpr(
const CXXDependentScopeMemberExpr *ME) const {
return HeuristicResolverImpl(Ctx).resolveMemberExpr(ME);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveDeclRefExpr(
const DependentScopeDeclRefExpr *RE) const {
return HeuristicResolverImpl(Ctx).resolveDeclRefExpr(RE);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveTypeOfCallExpr(const CallExpr *CE) const {
return HeuristicResolverImpl(Ctx).resolveTypeOfCallExpr(CE);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveCalleeOfCallExpr(const CallExpr *CE) const {
return HeuristicResolverImpl(Ctx).resolveCalleeOfCallExpr(CE);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveUsingValueDecl(
const UnresolvedUsingValueDecl *UUVD) const {
return HeuristicResolverImpl(Ctx).resolveUsingValueDecl(UUVD);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveDependentNameType(
const DependentNameType *DNT) const {
return HeuristicResolverImpl(Ctx).resolveDependentNameType(DNT);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST) const {
return HeuristicResolverImpl(Ctx).resolveTemplateSpecializationType(DTST);
}
QualType HeuristicResolver::resolveNestedNameSpecifierToType(
const NestedNameSpecifier *NNS) const {
return HeuristicResolverImpl(Ctx).resolveNestedNameSpecifierToType(NNS);
}
std::vector<const NamedDecl *> HeuristicResolver::lookupDependentName(
CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
return HeuristicResolverImpl(Ctx).lookupDependentName(RD, Name, Filter);
}
const QualType HeuristicResolver::getPointeeType(QualType T) const {
return HeuristicResolverImpl(Ctx).getPointeeType(T);
}
TagDecl *HeuristicResolver::resolveTypeToTagDecl(QualType T) const {
return HeuristicResolverImpl(Ctx).resolveTypeToTagDecl(T);
}
QualType HeuristicResolver::simplifyType(QualType Type, const Expr *E,
bool UnwrapPointer) {
return HeuristicResolverImpl(Ctx).simplifyType(Type, E, UnwrapPointer);
}
FunctionProtoTypeLoc
HeuristicResolver::getFunctionProtoTypeLoc(const Expr *Fn) const {
return HeuristicResolverImpl(Ctx).getFunctionProtoTypeLoc(Fn);
}
} // namespace clang
|