aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/Targets/SPIR.cpp
blob: d952c6e1176078aebafb5f19ecc3ae7386efe7e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
//===- SPIR.cpp -----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ABIInfoImpl.h"
#include "HLSLBufferLayoutBuilder.h"
#include "TargetInfo.h"

using namespace clang;
using namespace clang::CodeGen;

//===----------------------------------------------------------------------===//
// Base ABI and target codegen info implementation common between SPIR and
// SPIR-V.
//===----------------------------------------------------------------------===//

namespace {
class CommonSPIRABIInfo : public DefaultABIInfo {
public:
  CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }

private:
  void setCCs();
};

class SPIRVABIInfo : public CommonSPIRABIInfo {
public:
  SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {}
  void computeInfo(CGFunctionInfo &FI) const override;

private:
  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
  ABIArgInfo classifyArgumentType(QualType Ty) const;
};
} // end anonymous namespace
namespace {
class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
      : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
  CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)
      : TargetCodeGenInfo(std::move(ABIInfo)) {}

  LangAS getASTAllocaAddressSpace() const override {
    return getLangASFromTargetAS(
        getABIInfo().getDataLayout().getAllocaAddrSpace());
  }

  unsigned getDeviceKernelCallingConv() const override;
  llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const override;
  llvm::Type *
  getHLSLType(CodeGenModule &CGM, const Type *Ty,
              const SmallVector<int32_t> *Packoffsets = nullptr) const override;
  llvm::Type *getSPIRVImageTypeFromHLSLResource(
      const HLSLAttributedResourceType::Attributes &attributes,
      QualType SampledType, CodeGenModule &CGM) const;
  void
  setOCLKernelStubCallingConvention(const FunctionType *&FT) const override;
};
class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo {
public:
  SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
      : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {}
  void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
  LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
                                  const VarDecl *D) const override;
  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &M) const override;
  llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
                                         SyncScope Scope,
                                         llvm::AtomicOrdering Ordering,
                                         llvm::LLVMContext &Ctx) const override;
  bool supportsLibCall() const override {
    return getABIInfo().getTarget().getTriple().getVendor() !=
           llvm::Triple::AMD;
  }
};

inline StringRef mapClangSyncScopeToLLVM(SyncScope Scope) {
  switch (Scope) {
  case SyncScope::HIPSingleThread:
  case SyncScope::SingleScope:
    return "singlethread";
  case SyncScope::HIPWavefront:
  case SyncScope::OpenCLSubGroup:
  case SyncScope::WavefrontScope:
    return "subgroup";
  case SyncScope::HIPWorkgroup:
  case SyncScope::OpenCLWorkGroup:
  case SyncScope::WorkgroupScope:
    return "workgroup";
  case SyncScope::HIPAgent:
  case SyncScope::OpenCLDevice:
  case SyncScope::DeviceScope:
    return "device";
  case SyncScope::SystemScope:
  case SyncScope::HIPSystem:
  case SyncScope::OpenCLAllSVMDevices:
    return "";
  }
  return "";
}
} // End anonymous namespace.

void CommonSPIRABIInfo::setCCs() {
  assert(getRuntimeCC() == llvm::CallingConv::C);
  RuntimeCC = llvm::CallingConv::SPIR_FUNC;
}

ABIArgInfo SPIRVABIInfo::classifyReturnType(QualType RetTy) const {
  if (getTarget().getTriple().getVendor() != llvm::Triple::AMD)
    return DefaultABIInfo::classifyReturnType(RetTy);
  if (!isAggregateTypeForABI(RetTy) || getRecordArgABI(RetTy, getCXXABI()))
    return DefaultABIInfo::classifyReturnType(RetTy);

  if (const RecordType *RT = RetTy->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    if (RD->hasFlexibleArrayMember())
      return DefaultABIInfo::classifyReturnType(RetTy);
  }

  // TODO: The AMDGPU ABI is non-trivial to represent in SPIR-V; in order to
  // avoid encoding various architecture specific bits here we return everything
  // as direct to retain type info for things like aggregates, for later perusal
  // when translating back to LLVM/lowering in the BE. This is also why we
  // disable flattening as the outcomes can mismatch between SPIR-V and AMDGPU.
  // This will be revisited / optimised in the future.
  return ABIArgInfo::getDirect(CGT.ConvertType(RetTy), 0u, nullptr, false);
}

ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const {
  if (getContext().getLangOpts().CUDAIsDevice) {
    // Coerce pointer arguments with default address space to CrossWorkGroup
    // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the
    // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space.
    llvm::Type *LTy = CGT.ConvertType(Ty);
    auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default);
    auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device);
    auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy);
    if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) {
      LTy = llvm::PointerType::get(PtrTy->getContext(), GlobalAS);
      return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
    }

    if (isAggregateTypeForABI(Ty)) {
      if (getTarget().getTriple().getVendor() == llvm::Triple::AMD)
        // TODO: The AMDGPU kernel ABI passes aggregates byref, which is not
        // currently expressible in SPIR-V; SPIR-V passes aggregates byval,
        // which the AMDGPU kernel ABI does not allow. Passing aggregates as
        // direct works around this impedance mismatch, as it retains type info
        // and can be correctly handled, post reverse-translation, by the AMDGPU
        // BE, which has to support this CC for legacy OpenCL purposes. It can
        // be brittle and does lead to performance degradation in certain
        // pathological cases. This will be revisited / optimised in the future,
        // once a way to deal with the byref/byval impedance mismatch is
        // identified.
        return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
      // Force copying aggregate type in kernel arguments by value when
      // compiling CUDA targeting SPIR-V. This is required for the object
      // copied to be valid on the device.
      // This behavior follows the CUDA spec
      // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing,
      // and matches the NVPTX implementation. TODO: hardcoding to 0 should be
      // revisited if HIPSPV / byval starts making use of the AS of an indirect
      // arg.
      return getNaturalAlignIndirect(Ty, /*AddrSpace=*/0, /*byval=*/true);
    }
  }
  return classifyArgumentType(Ty);
}

ABIArgInfo SPIRVABIInfo::classifyArgumentType(QualType Ty) const {
  if (getTarget().getTriple().getVendor() != llvm::Triple::AMD)
    return DefaultABIInfo::classifyArgumentType(Ty);
  if (!isAggregateTypeForABI(Ty))
    return DefaultABIInfo::classifyArgumentType(Ty);

  // Records with non-trivial destructors/copy-constructors should not be
  // passed by value.
  if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
    return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace(),
                                   RAA == CGCXXABI::RAA_DirectInMemory);

  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    if (RD->hasFlexibleArrayMember())
      return DefaultABIInfo::classifyArgumentType(Ty);
  }

  return ABIArgInfo::getDirect(CGT.ConvertType(Ty), 0u, nullptr, false);
}

void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const {
  // The logic is same as in DefaultABIInfo with an exception on the kernel
  // arguments handling.
  llvm::CallingConv::ID CC = FI.getCallingConvention();

  if (!getCXXABI().classifyReturnType(FI))
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());

  for (auto &I : FI.arguments()) {
    if (CC == llvm::CallingConv::SPIR_KERNEL) {
      I.info = classifyKernelArgumentType(I.type);
    } else {
      I.info = classifyArgumentType(I.type);
    }
  }
}

namespace clang {
namespace CodeGen {
void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
  if (CGM.getTarget().getTriple().isSPIRV())
    SPIRVABIInfo(CGM.getTypes()).computeInfo(FI);
  else
    CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI);
}
}
}

unsigned CommonSPIRTargetCodeGenInfo::getDeviceKernelCallingConv() const {
  return llvm::CallingConv::SPIR_KERNEL;
}

void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention(
    const FunctionType *&FT) const {
  // Convert HIP kernels to SPIR-V kernels.
  if (getABIInfo().getContext().getLangOpts().HIP) {
    FT = getABIInfo().getContext().adjustFunctionType(
        FT, FT->getExtInfo().withCallingConv(CC_DeviceKernel));
    return;
  }
}

void CommonSPIRTargetCodeGenInfo::setOCLKernelStubCallingConvention(
    const FunctionType *&FT) const {
  FT = getABIInfo().getContext().adjustFunctionType(
      FT, FT->getExtInfo().withCallingConv(CC_SpirFunction));
}

LangAS
SPIRVTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
                                                 const VarDecl *D) const {
  assert(!CGM.getLangOpts().OpenCL &&
         !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
         "Address space agnostic languages only");
  // If we're here it means that we're using the SPIRDefIsGen ASMap, hence for
  // the global AS we can rely on either cuda_device or sycl_global to be
  // correct; however, since this is not a CUDA Device context, we use
  // sycl_global to prevent confusion with the assertion.
  LangAS DefaultGlobalAS = getLangASFromTargetAS(
      CGM.getContext().getTargetAddressSpace(LangAS::sycl_global));
  if (!D)
    return DefaultGlobalAS;

  LangAS AddrSpace = D->getType().getAddressSpace();
  if (AddrSpace != LangAS::Default)
    return AddrSpace;

  return DefaultGlobalAS;
}

void SPIRVTargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
  if (!M.getLangOpts().HIP ||
      M.getTarget().getTriple().getVendor() != llvm::Triple::AMD)
    return;
  if (GV->isDeclaration())
    return;

  auto F = dyn_cast<llvm::Function>(GV);
  if (!F)
    return;

  auto FD = dyn_cast_or_null<FunctionDecl>(D);
  if (!FD)
    return;
  if (!FD->hasAttr<CUDAGlobalAttr>())
    return;

  unsigned N = M.getLangOpts().GPUMaxThreadsPerBlock;
  if (auto FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>())
    N = FlatWGS->getMax()->EvaluateKnownConstInt(M.getContext()).getExtValue();

  // We encode the maximum flat WG size in the first component of the 3D
  // max_work_group_size attribute, which will get reverse translated into the
  // original AMDGPU attribute when targeting AMDGPU.
  auto Int32Ty = llvm::IntegerType::getInt32Ty(M.getLLVMContext());
  llvm::Metadata *AttrMDArgs[] = {
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, N)),
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 1)),
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 1))};

  F->setMetadata("max_work_group_size",
                 llvm::MDNode::get(M.getLLVMContext(), AttrMDArgs));
}

llvm::SyncScope::ID
SPIRVTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &, SyncScope Scope,
                                           llvm::AtomicOrdering,
                                           llvm::LLVMContext &Ctx) const {
  return Ctx.getOrInsertSyncScopeID(mapClangSyncScopeToLLVM(Scope));
}

/// Construct a SPIR-V target extension type for the given OpenCL image type.
static llvm::Type *getSPIRVImageType(llvm::LLVMContext &Ctx, StringRef BaseType,
                                     StringRef OpenCLName,
                                     unsigned AccessQualifier) {
  // These parameters compare to the operands of OpTypeImage (see
  // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage
  // for more details). The first 6 integer parameters all default to 0, and
  // will be changed to 1 only for the image type(s) that set the parameter to
  // one. The 7th integer parameter is the access qualifier, which is tacked on
  // at the end.
  SmallVector<unsigned, 7> IntParams = {0, 0, 0, 0, 0, 0};

  // Choose the dimension of the image--this corresponds to the Dim enum in
  // SPIR-V (first integer parameter of OpTypeImage).
  if (OpenCLName.starts_with("image2d"))
    IntParams[0] = 1;
  else if (OpenCLName.starts_with("image3d"))
    IntParams[0] = 2;
  else if (OpenCLName == "image1d_buffer")
    IntParams[0] = 5; // Buffer
  else
    assert(OpenCLName.starts_with("image1d") && "Unknown image type");

  // Set the other integer parameters of OpTypeImage if necessary. Note that the
  // OpenCL image types don't provide any information for the Sampled or
  // Image Format parameters.
  if (OpenCLName.contains("_depth"))
    IntParams[1] = 1;
  if (OpenCLName.contains("_array"))
    IntParams[2] = 1;
  if (OpenCLName.contains("_msaa"))
    IntParams[3] = 1;

  // Access qualifier
  IntParams.push_back(AccessQualifier);

  return llvm::TargetExtType::get(Ctx, BaseType, {llvm::Type::getVoidTy(Ctx)},
                                  IntParams);
}

llvm::Type *CommonSPIRTargetCodeGenInfo::getOpenCLType(CodeGenModule &CGM,
                                                       const Type *Ty) const {
  llvm::LLVMContext &Ctx = CGM.getLLVMContext();
  if (auto *PipeTy = dyn_cast<PipeType>(Ty))
    return llvm::TargetExtType::get(Ctx, "spirv.Pipe", {},
                                    {!PipeTy->isReadOnly()});
  if (auto *BuiltinTy = dyn_cast<BuiltinType>(Ty)) {
    enum AccessQualifier : unsigned { AQ_ro = 0, AQ_wo = 1, AQ_rw = 2 };
    switch (BuiltinTy->getKind()) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
    case BuiltinType::Id:                                                      \
      return getSPIRVImageType(Ctx, "spirv.Image", #ImgType, AQ_##Suffix);
#include "clang/Basic/OpenCLImageTypes.def"
    case BuiltinType::OCLSampler:
      return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
    case BuiltinType::OCLEvent:
      return llvm::TargetExtType::get(Ctx, "spirv.Event");
    case BuiltinType::OCLClkEvent:
      return llvm::TargetExtType::get(Ctx, "spirv.DeviceEvent");
    case BuiltinType::OCLQueue:
      return llvm::TargetExtType::get(Ctx, "spirv.Queue");
    case BuiltinType::OCLReserveID:
      return llvm::TargetExtType::get(Ctx, "spirv.ReserveId");
#define INTEL_SUBGROUP_AVC_TYPE(Name, Id)                                      \
    case BuiltinType::OCLIntelSubgroupAVC##Id:                                 \
      return llvm::TargetExtType::get(Ctx, "spirv.Avc" #Id "INTEL");
#include "clang/Basic/OpenCLExtensionTypes.def"
    default:
      return nullptr;
    }
  }

  return nullptr;
}

// Gets a spirv.IntegralConstant or spirv.Literal. If IntegralType is present,
// returns an IntegralConstant, otherwise returns a Literal.
static llvm::Type *getInlineSpirvConstant(CodeGenModule &CGM,
                                          llvm::Type *IntegralType,
                                          llvm::APInt Value) {
  llvm::LLVMContext &Ctx = CGM.getLLVMContext();

  // Convert the APInt value to an array of uint32_t words
  llvm::SmallVector<uint32_t> Words;

  while (Value.ugt(0)) {
    uint32_t Word = Value.trunc(32).getZExtValue();
    Value.lshrInPlace(32);

    Words.push_back(Word);
  }
  if (Words.size() == 0)
    Words.push_back(0);

  if (IntegralType)
    return llvm::TargetExtType::get(Ctx, "spirv.IntegralConstant",
                                    {IntegralType}, Words);
  return llvm::TargetExtType::get(Ctx, "spirv.Literal", {}, Words);
}

static llvm::Type *getInlineSpirvType(CodeGenModule &CGM,
                                      const HLSLInlineSpirvType *SpirvType) {
  llvm::LLVMContext &Ctx = CGM.getLLVMContext();

  llvm::SmallVector<llvm::Type *> Operands;

  for (auto &Operand : SpirvType->getOperands()) {
    using SpirvOperandKind = SpirvOperand::SpirvOperandKind;

    llvm::Type *Result = nullptr;
    switch (Operand.getKind()) {
    case SpirvOperandKind::ConstantId: {
      llvm::Type *IntegralType =
          CGM.getTypes().ConvertType(Operand.getResultType());

      Result = getInlineSpirvConstant(CGM, IntegralType, Operand.getValue());
      break;
    }
    case SpirvOperandKind::Literal: {
      Result = getInlineSpirvConstant(CGM, nullptr, Operand.getValue());
      break;
    }
    case SpirvOperandKind::TypeId: {
      QualType TypeOperand = Operand.getResultType();
      if (auto *RT = TypeOperand->getAs<RecordType>()) {
        auto *RD = RT->getDecl();
        assert(RD->isCompleteDefinition() &&
               "Type completion should have been required in Sema");

        const FieldDecl *HandleField = RD->findFirstNamedDataMember();
        if (HandleField) {
          QualType ResourceType = HandleField->getType();
          if (ResourceType->getAs<HLSLAttributedResourceType>()) {
            TypeOperand = ResourceType;
          }
        }
      }
      Result = CGM.getTypes().ConvertType(TypeOperand);
      break;
    }
    default:
      llvm_unreachable("HLSLInlineSpirvType had invalid operand!");
      break;
    }

    assert(Result);
    Operands.push_back(Result);
  }

  return llvm::TargetExtType::get(Ctx, "spirv.Type", Operands,
                                  {SpirvType->getOpcode(), SpirvType->getSize(),
                                   SpirvType->getAlignment()});
}

llvm::Type *CommonSPIRTargetCodeGenInfo::getHLSLType(
    CodeGenModule &CGM, const Type *Ty,
    const SmallVector<int32_t> *Packoffsets) const {
  llvm::LLVMContext &Ctx = CGM.getLLVMContext();

  if (auto *SpirvType = dyn_cast<HLSLInlineSpirvType>(Ty))
    return getInlineSpirvType(CGM, SpirvType);

  auto *ResType = dyn_cast<HLSLAttributedResourceType>(Ty);
  if (!ResType)
    return nullptr;

  const HLSLAttributedResourceType::Attributes &ResAttrs = ResType->getAttrs();
  switch (ResAttrs.ResourceClass) {
  case llvm::dxil::ResourceClass::UAV:
  case llvm::dxil::ResourceClass::SRV: {
    // TypedBuffer and RawBuffer both need element type
    QualType ContainedTy = ResType->getContainedType();
    if (ContainedTy.isNull())
      return nullptr;

    assert(!ResAttrs.IsROV &&
           "Rasterizer order views not implemented for SPIR-V yet");

    if (!ResAttrs.RawBuffer) {
      // convert element type
      return getSPIRVImageTypeFromHLSLResource(ResAttrs, ContainedTy, CGM);
    }

    llvm::Type *ElemType = CGM.getTypes().ConvertTypeForMem(ContainedTy);
    llvm::ArrayType *RuntimeArrayType = llvm::ArrayType::get(ElemType, 0);
    uint32_t StorageClass = /* StorageBuffer storage class */ 12;
    bool IsWritable = ResAttrs.ResourceClass == llvm::dxil::ResourceClass::UAV;
    return llvm::TargetExtType::get(Ctx, "spirv.VulkanBuffer",
                                    {RuntimeArrayType},
                                    {StorageClass, IsWritable});
  }
  case llvm::dxil::ResourceClass::CBuffer: {
    QualType ContainedTy = ResType->getContainedType();
    if (ContainedTy.isNull() || !ContainedTy->isStructureType())
      return nullptr;

    llvm::Type *BufferLayoutTy =
        HLSLBufferLayoutBuilder(CGM, "spirv.Layout")
            .createLayoutType(ContainedTy->getAsStructureType(), Packoffsets);
    uint32_t StorageClass = /* Uniform storage class */ 2;
    return llvm::TargetExtType::get(Ctx, "spirv.VulkanBuffer", {BufferLayoutTy},
                                    {StorageClass, false});
    break;
  }
  case llvm::dxil::ResourceClass::Sampler:
    return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
  }
  return nullptr;
}

llvm::Type *CommonSPIRTargetCodeGenInfo::getSPIRVImageTypeFromHLSLResource(
    const HLSLAttributedResourceType::Attributes &attributes, QualType Ty,
    CodeGenModule &CGM) const {
  llvm::LLVMContext &Ctx = CGM.getLLVMContext();

  Ty = Ty->getCanonicalTypeUnqualified();
  if (const VectorType *V = dyn_cast<VectorType>(Ty))
    Ty = V->getElementType();
  assert(!Ty->isVectorType() && "We still have a vector type.");

  llvm::Type *SampledType = CGM.getTypes().ConvertTypeForMem(Ty);

  assert((SampledType->isIntegerTy() || SampledType->isFloatingPointTy()) &&
         "The element type for a SPIR-V resource must be a scalar integer or "
         "floating point type.");

  // These parameters correspond to the operands to the OpTypeImage SPIR-V
  // instruction. See
  // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage.
  SmallVector<unsigned, 6> IntParams(6, 0);

  const char *Name =
      Ty->isSignedIntegerType() ? "spirv.SignedImage" : "spirv.Image";

  // Dim
  // For now we assume everything is a buffer.
  IntParams[0] = 5;

  // Depth
  // HLSL does not indicate if it is a depth texture or not, so we use unknown.
  IntParams[1] = 2;

  // Arrayed
  IntParams[2] = 0;

  // MS
  IntParams[3] = 0;

  // Sampled
  IntParams[4] =
      attributes.ResourceClass == llvm::dxil::ResourceClass::UAV ? 2 : 1;

  // Image format.
  // Setting to unknown for now.
  IntParams[5] = 0;

  llvm::TargetExtType *ImageType =
      llvm::TargetExtType::get(Ctx, Name, {SampledType}, IntParams);
  return ImageType;
}

std::unique_ptr<TargetCodeGenInfo>
CodeGen::createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM) {
  return std::make_unique<CommonSPIRTargetCodeGenInfo>(CGM.getTypes());
}

std::unique_ptr<TargetCodeGenInfo>
CodeGen::createSPIRVTargetCodeGenInfo(CodeGenModule &CGM) {
  return std::make_unique<SPIRVTargetCodeGenInfo>(CGM.getTypes());
}