aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/CIR/CodeGen/CIRGenModule.cpp
blob: 3b13d495be5e361eba8477cf2c8e084af351c84d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
//===- CIRGenModule.cpp - Per-Module state for CIR generation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the internal per-translation-unit state used for CIR translation.
//
//===----------------------------------------------------------------------===//

#include "CIRGenModule.h"
#include "CIRGenConstantEmitter.h"
#include "CIRGenFunction.h"

#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclOpenACC.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/Basic/SourceManager.h"
#include "clang/CIR/Dialect/IR/CIRDialect.h"
#include "clang/CIR/MissingFeatures.h"

#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Verifier.h"

using namespace clang;
using namespace clang::CIRGen;

CIRGenModule::CIRGenModule(mlir::MLIRContext &mlirContext,
                           clang::ASTContext &astContext,
                           const clang::CodeGenOptions &cgo,
                           DiagnosticsEngine &diags)
    : builder(mlirContext, *this), astContext(astContext),
      langOpts(astContext.getLangOpts()), codeGenOpts(cgo),
      theModule{mlir::ModuleOp::create(mlir::UnknownLoc::get(&mlirContext))},
      diags(diags), target(astContext.getTargetInfo()), genTypes(*this) {

  // Initialize cached types
  VoidTy = cir::VoidType::get(&getMLIRContext());
  SInt8Ty = cir::IntType::get(&getMLIRContext(), 8, /*isSigned=*/true);
  SInt16Ty = cir::IntType::get(&getMLIRContext(), 16, /*isSigned=*/true);
  SInt32Ty = cir::IntType::get(&getMLIRContext(), 32, /*isSigned=*/true);
  SInt64Ty = cir::IntType::get(&getMLIRContext(), 64, /*isSigned=*/true);
  SInt128Ty = cir::IntType::get(&getMLIRContext(), 128, /*isSigned=*/true);
  UInt8Ty = cir::IntType::get(&getMLIRContext(), 8, /*isSigned=*/false);
  UInt16Ty = cir::IntType::get(&getMLIRContext(), 16, /*isSigned=*/false);
  UInt32Ty = cir::IntType::get(&getMLIRContext(), 32, /*isSigned=*/false);
  UInt64Ty = cir::IntType::get(&getMLIRContext(), 64, /*isSigned=*/false);
  UInt128Ty = cir::IntType::get(&getMLIRContext(), 128, /*isSigned=*/false);
  FP16Ty = cir::FP16Type::get(&getMLIRContext());
  BFloat16Ty = cir::BF16Type::get(&getMLIRContext());
  FloatTy = cir::SingleType::get(&getMLIRContext());
  DoubleTy = cir::DoubleType::get(&getMLIRContext());
  FP80Ty = cir::FP80Type::get(&getMLIRContext());
  FP128Ty = cir::FP128Type::get(&getMLIRContext());

  PointerAlignInBytes =
      astContext
          .toCharUnitsFromBits(
              astContext.getTargetInfo().getPointerAlign(LangAS::Default))
          .getQuantity();

  // TODO(CIR): Should be updated once TypeSizeInfoAttr is upstreamed
  const unsigned sizeTypeSize =
      astContext.getTypeSize(astContext.getSignedSizeType());
  PtrDiffTy =
      cir::IntType::get(&getMLIRContext(), sizeTypeSize, /*isSigned=*/true);

  theModule->setAttr(cir::CIRDialect::getTripleAttrName(),
                     builder.getStringAttr(getTriple().str()));
}

CharUnits CIRGenModule::getNaturalTypeAlignment(QualType t,
                                                LValueBaseInfo *baseInfo) {
  assert(!cir::MissingFeatures::opTBAA());

  // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown, but
  // that doesn't return the information we need to compute baseInfo.

  // Honor alignment typedef attributes even on incomplete types.
  // We also honor them straight for C++ class types, even as pointees;
  // there's an expressivity gap here.
  if (const auto *tt = t->getAs<TypedefType>()) {
    if (unsigned align = tt->getDecl()->getMaxAlignment()) {
      if (baseInfo)
        *baseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
      return astContext.toCharUnitsFromBits(align);
    }
  }

  // Analyze the base element type, so we don't get confused by incomplete
  // array types.
  t = astContext.getBaseElementType(t);

  if (t->isIncompleteType()) {
    // We could try to replicate the logic from
    // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
    // type is incomplete, so it's impossible to test. We could try to reuse
    // getTypeAlignIfKnown, but that doesn't return the information we need
    // to set baseInfo.  So just ignore the possibility that the alignment is
    // greater than one.
    if (baseInfo)
      *baseInfo = LValueBaseInfo(AlignmentSource::Type);
    return CharUnits::One();
  }

  if (baseInfo)
    *baseInfo = LValueBaseInfo(AlignmentSource::Type);

  CharUnits alignment;
  if (t.getQualifiers().hasUnaligned()) {
    alignment = CharUnits::One();
  } else {
    assert(!cir::MissingFeatures::alignCXXRecordDecl());
    alignment = astContext.getTypeAlignInChars(t);
  }

  // Cap to the global maximum type alignment unless the alignment
  // was somehow explicit on the type.
  if (unsigned maxAlign = astContext.getLangOpts().MaxTypeAlign) {
    if (alignment.getQuantity() > maxAlign &&
        !astContext.isAlignmentRequired(t))
      alignment = CharUnits::fromQuantity(maxAlign);
  }
  return alignment;
}

const TargetCIRGenInfo &CIRGenModule::getTargetCIRGenInfo() {
  if (theTargetCIRGenInfo)
    return *theTargetCIRGenInfo;

  const llvm::Triple &triple = getTarget().getTriple();
  switch (triple.getArch()) {
  default:
    assert(!cir::MissingFeatures::targetCIRGenInfoArch());

    // Currently we just fall through to x86_64.
    [[fallthrough]];

  case llvm::Triple::x86_64: {
    switch (triple.getOS()) {
    default:
      assert(!cir::MissingFeatures::targetCIRGenInfoOS());

      // Currently we just fall through to x86_64.
      [[fallthrough]];

    case llvm::Triple::Linux:
      theTargetCIRGenInfo = createX8664TargetCIRGenInfo(genTypes);
      return *theTargetCIRGenInfo;
    }
  }
  }
}

mlir::Location CIRGenModule::getLoc(SourceLocation cLoc) {
  assert(cLoc.isValid() && "expected valid source location");
  const SourceManager &sm = astContext.getSourceManager();
  PresumedLoc pLoc = sm.getPresumedLoc(cLoc);
  StringRef filename = pLoc.getFilename();
  return mlir::FileLineColLoc::get(builder.getStringAttr(filename),
                                   pLoc.getLine(), pLoc.getColumn());
}

mlir::Location CIRGenModule::getLoc(SourceRange cRange) {
  assert(cRange.isValid() && "expected a valid source range");
  mlir::Location begin = getLoc(cRange.getBegin());
  mlir::Location end = getLoc(cRange.getEnd());
  mlir::Attribute metadata;
  return mlir::FusedLoc::get({begin, end}, metadata, builder.getContext());
}

void CIRGenModule::emitGlobal(clang::GlobalDecl gd) {
  if (const auto *cd = dyn_cast<clang::OpenACCConstructDecl>(gd.getDecl())) {
    emitGlobalOpenACCDecl(cd);
    return;
  }

  const auto *global = cast<ValueDecl>(gd.getDecl());

  if (const auto *fd = dyn_cast<FunctionDecl>(global)) {
    // Update deferred annotations with the latest declaration if the function
    // was already used or defined.
    if (fd->hasAttr<AnnotateAttr>())
      errorNYI(fd->getSourceRange(), "deferredAnnotations");
    if (!fd->doesThisDeclarationHaveABody()) {
      if (!fd->doesDeclarationForceExternallyVisibleDefinition())
        return;

      errorNYI(fd->getSourceRange(),
               "function declaration that forces code gen");
      return;
    }
  } else {
    assert(cast<VarDecl>(global)->isFileVarDecl() &&
           "Cannot emit local var decl as global");
  }

  // TODO(CIR): Defer emitting some global definitions until later
  emitGlobalDefinition(gd);
}

void CIRGenModule::emitGlobalFunctionDefinition(clang::GlobalDecl gd,
                                                mlir::Operation *op) {
  auto const *funcDecl = cast<FunctionDecl>(gd.getDecl());
  if (funcDecl->getIdentifier() == nullptr) {
    errorNYI(funcDecl->getSourceRange().getBegin(),
             "function definition with a non-identifier for a name");
    return;
  }
  cir::FuncType funcType =
      cast<cir::FuncType>(convertType(funcDecl->getType()));

  cir::FuncOp funcOp = dyn_cast_if_present<cir::FuncOp>(op);
  if (!funcOp || funcOp.getFunctionType() != funcType) {
    funcOp = getAddrOfFunction(gd, funcType, /*ForVTable=*/false,
                               /*DontDefer=*/true, ForDefinition);
  }

  CIRGenFunction cgf(*this, builder);
  curCGF = &cgf;
  {
    mlir::OpBuilder::InsertionGuard guard(builder);
    cgf.generateCode(gd, funcOp, funcType);
  }
  curCGF = nullptr;
}

mlir::Operation *CIRGenModule::getGlobalValue(StringRef name) {
  return mlir::SymbolTable::lookupSymbolIn(theModule, name);
}

/// If the specified mangled name is not in the module,
/// create and return an mlir GlobalOp with the specified type (TODO(cir):
/// address space).
///
/// TODO(cir):
/// 1. If there is something in the module with the specified name, return
/// it potentially bitcasted to the right type.
///
/// 2. If \p d is non-null, it specifies a decl that correspond to this.  This
/// is used to set the attributes on the global when it is first created.
///
/// 3. If \p isForDefinition is true, it is guaranteed that an actual global
/// with type \p ty will be returned, not conversion of a variable with the same
/// mangled name but some other type.
cir::GlobalOp
CIRGenModule::getOrCreateCIRGlobal(StringRef mangledName, mlir::Type ty,
                                   LangAS langAS, const VarDecl *d,
                                   ForDefinition_t isForDefinition) {
  // Lookup the entry, lazily creating it if necessary.
  cir::GlobalOp entry;
  if (mlir::Operation *v = getGlobalValue(mangledName)) {
    if (!isa<cir::GlobalOp>(v))
      errorNYI(d->getSourceRange(), "global with non-GlobalOp type");
    entry = cast<cir::GlobalOp>(v);
  }

  if (entry) {
    assert(!cir::MissingFeatures::addressSpace());
    assert(!cir::MissingFeatures::opGlobalWeakRef());

    assert(!cir::MissingFeatures::setDLLStorageClass());
    assert(!cir::MissingFeatures::openMP());

    if (entry.getSymType() == ty)
      return entry;

    // If there are two attempts to define the same mangled name, issue an
    // error.
    //
    // TODO(cir): look at mlir::GlobalValue::isDeclaration for all aspects of
    // recognizing the global as a declaration, for now only check if
    // initializer is present.
    if (isForDefinition && !entry.isDeclaration()) {
      errorNYI(d->getSourceRange(), "global with conflicting type");
    }

    // Address space check removed because it is unnecessary because CIR records
    // address space info in types.

    // (If global is requested for a definition, we always need to create a new
    // global, not just return a bitcast.)
    if (!isForDefinition)
      return entry;
  }

  errorNYI(d->getSourceRange(), "reference of undeclared global");
  return {};
}

cir::GlobalOp
CIRGenModule::getOrCreateCIRGlobal(const VarDecl *d, mlir::Type ty,
                                   ForDefinition_t isForDefinition) {
  assert(d->hasGlobalStorage() && "Not a global variable");
  QualType astTy = d->getType();
  if (!ty)
    ty = getTypes().convertTypeForMem(astTy);

  assert(!cir::MissingFeatures::mangledNames());
  return getOrCreateCIRGlobal(d->getIdentifier()->getName(), ty,
                              astTy.getAddressSpace(), d, isForDefinition);
}

/// Return the mlir::Value for the address of the given global variable. If
/// \p ty is non-null and if the global doesn't exist, then it will be created
/// with the specified type instead of whatever the normal requested type would
/// be. If \p isForDefinition is true, it is guaranteed that an actual global
/// with type \p ty will be returned, not conversion of a variable with the same
/// mangled name but some other type.
mlir::Value CIRGenModule::getAddrOfGlobalVar(const VarDecl *d, mlir::Type ty,
                                             ForDefinition_t isForDefinition) {
  assert(d->hasGlobalStorage() && "Not a global variable");
  QualType astTy = d->getType();
  if (!ty)
    ty = getTypes().convertTypeForMem(astTy);

  assert(!cir::MissingFeatures::opGlobalThreadLocal());

  cir::GlobalOp g = getOrCreateCIRGlobal(d, ty, isForDefinition);
  mlir::Type ptrTy = builder.getPointerTo(g.getSymType());
  return builder.create<cir::GetGlobalOp>(getLoc(d->getSourceRange()), ptrTy,
                                          g.getSymName());
}

void CIRGenModule::emitGlobalVarDefinition(const clang::VarDecl *vd,
                                           bool isTentative) {
  const QualType astTy = vd->getType();
  const mlir::Type type = convertType(vd->getType());
  if (clang::IdentifierInfo *identifier = vd->getIdentifier()) {
    auto varOp = builder.create<cir::GlobalOp>(getLoc(vd->getSourceRange()),
                                               identifier->getName(), type);
    // TODO(CIR): This code for processing initial values is a placeholder
    // until class ConstantEmitter is upstreamed and the code for processing
    // constant expressions is filled out.  Only the most basic handling of
    // certain constant expressions is implemented for now.
    const VarDecl *initDecl;
    const Expr *initExpr = vd->getAnyInitializer(initDecl);
    mlir::Attribute initializer;
    if (initExpr) {
      if (APValue *value = initDecl->evaluateValue()) {
        ConstantEmitter emitter(*this);
        initializer = emitter.tryEmitPrivateForMemory(*value, astTy);
      } else {
        errorNYI(initExpr->getSourceRange(), "non-constant initializer");
      }
    } else {
      initializer = builder.getZeroInitAttr(convertType(astTy));
    }

    varOp.setInitialValueAttr(initializer);

    // Set CIR's linkage type as appropriate.
    cir::GlobalLinkageKind linkage =
        getCIRLinkageVarDefinition(vd, /*IsConstant=*/false);

    // Set CIR linkage and DLL storage class.
    varOp.setLinkage(linkage);

    if (linkage == cir::GlobalLinkageKind::CommonLinkage)
      errorNYI(initExpr->getSourceRange(), "common linkage");

    theModule.push_back(varOp);
  } else {
    errorNYI(vd->getSourceRange().getBegin(),
             "variable definition with a non-identifier for a name");
  }
}

void CIRGenModule::emitGlobalDefinition(clang::GlobalDecl gd,
                                        mlir::Operation *op) {
  const auto *decl = cast<ValueDecl>(gd.getDecl());
  if (const auto *fd = dyn_cast<FunctionDecl>(decl)) {
    // TODO(CIR): Skip generation of CIR for functions with available_externally
    // linkage at -O0.

    if (const auto *method = dyn_cast<CXXMethodDecl>(decl)) {
      // Make sure to emit the definition(s) before we emit the thunks. This is
      // necessary for the generation of certain thunks.
      (void)method;
      errorNYI(method->getSourceRange(), "member function");
      return;
    }

    if (fd->isMultiVersion())
      errorNYI(fd->getSourceRange(), "multiversion functions");
    emitGlobalFunctionDefinition(gd, op);
    return;
  }

  if (const auto *vd = dyn_cast<VarDecl>(decl))
    return emitGlobalVarDefinition(vd, !vd->hasDefinition());

  llvm_unreachable("Invalid argument to CIRGenModule::emitGlobalDefinition");
}

static bool shouldBeInCOMDAT(CIRGenModule &cgm, const Decl &d) {
  assert(!cir::MissingFeatures::supportComdat());

  if (d.hasAttr<SelectAnyAttr>())
    return true;

  GVALinkage linkage;
  if (auto *vd = dyn_cast<VarDecl>(&d))
    linkage = cgm.getASTContext().GetGVALinkageForVariable(vd);
  else
    linkage =
        cgm.getASTContext().GetGVALinkageForFunction(cast<FunctionDecl>(&d));

  switch (linkage) {
  case clang::GVA_Internal:
  case clang::GVA_AvailableExternally:
  case clang::GVA_StrongExternal:
    return false;
  case clang::GVA_DiscardableODR:
  case clang::GVA_StrongODR:
    return true;
  }
  llvm_unreachable("No such linkage");
}

// TODO(CIR): this could be a common method between LLVM codegen.
static bool isVarDeclStrongDefinition(const ASTContext &astContext,
                                      CIRGenModule &cgm, const VarDecl *vd,
                                      bool noCommon) {
  // Don't give variables common linkage if -fno-common was specified unless it
  // was overridden by a NoCommon attribute.
  if ((noCommon || vd->hasAttr<NoCommonAttr>()) && !vd->hasAttr<CommonAttr>())
    return true;

  // C11 6.9.2/2:
  //   A declaration of an identifier for an object that has file scope without
  //   an initializer, and without a storage-class specifier or with the
  //   storage-class specifier static, constitutes a tentative definition.
  if (vd->getInit() || vd->hasExternalStorage())
    return true;

  // A variable cannot be both common and exist in a section.
  if (vd->hasAttr<SectionAttr>())
    return true;

  // A variable cannot be both common and exist in a section.
  // We don't try to determine which is the right section in the front-end.
  // If no specialized section name is applicable, it will resort to default.
  if (vd->hasAttr<PragmaClangBSSSectionAttr>() ||
      vd->hasAttr<PragmaClangDataSectionAttr>() ||
      vd->hasAttr<PragmaClangRelroSectionAttr>() ||
      vd->hasAttr<PragmaClangRodataSectionAttr>())
    return true;

  // Thread local vars aren't considered common linkage.
  if (vd->getTLSKind())
    return true;

  // Tentative definitions marked with WeakImportAttr are true definitions.
  if (vd->hasAttr<WeakImportAttr>())
    return true;

  // A variable cannot be both common and exist in a comdat.
  if (shouldBeInCOMDAT(cgm, *vd))
    return true;

  // Declarations with a required alignment do not have common linkage in MSVC
  // mode.
  if (astContext.getTargetInfo().getCXXABI().isMicrosoft()) {
    if (vd->hasAttr<AlignedAttr>())
      return true;
    QualType varType = vd->getType();
    if (astContext.isAlignmentRequired(varType))
      return true;

    if (const auto *rt = varType->getAs<RecordType>()) {
      const RecordDecl *rd = rt->getDecl();
      for (const FieldDecl *fd : rd->fields()) {
        if (fd->isBitField())
          continue;
        if (fd->hasAttr<AlignedAttr>())
          return true;
        if (astContext.isAlignmentRequired(fd->getType()))
          return true;
      }
    }
  }

  // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
  // common symbols, so symbols with greater alignment requirements cannot be
  // common.
  // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
  // alignments for common symbols via the aligncomm directive, so this
  // restriction only applies to MSVC environments.
  if (astContext.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
      astContext.getTypeAlignIfKnown(vd->getType()) >
          astContext.toBits(CharUnits::fromQuantity(32)))
    return true;

  return false;
}

cir::GlobalLinkageKind CIRGenModule::getCIRLinkageForDeclarator(
    const DeclaratorDecl *dd, GVALinkage linkage, bool isConstantVariable) {
  if (linkage == GVA_Internal)
    return cir::GlobalLinkageKind::InternalLinkage;

  if (dd->hasAttr<WeakAttr>()) {
    if (isConstantVariable)
      return cir::GlobalLinkageKind::WeakODRLinkage;
    return cir::GlobalLinkageKind::WeakAnyLinkage;
  }

  if (const auto *fd = dd->getAsFunction())
    if (fd->isMultiVersion() && linkage == GVA_AvailableExternally)
      return cir::GlobalLinkageKind::LinkOnceAnyLinkage;

  // We are guaranteed to have a strong definition somewhere else,
  // so we can use available_externally linkage.
  if (linkage == GVA_AvailableExternally)
    return cir::GlobalLinkageKind::AvailableExternallyLinkage;

  // Note that Apple's kernel linker doesn't support symbol
  // coalescing, so we need to avoid linkonce and weak linkages there.
  // Normally, this means we just map to internal, but for explicit
  // instantiations we'll map to external.

  // In C++, the compiler has to emit a definition in every translation unit
  // that references the function.  We should use linkonce_odr because
  // a) if all references in this translation unit are optimized away, we
  // don't need to codegen it.  b) if the function persists, it needs to be
  // merged with other definitions. c) C++ has the ODR, so we know the
  // definition is dependable.
  if (linkage == GVA_DiscardableODR)
    return !astContext.getLangOpts().AppleKext
               ? cir::GlobalLinkageKind::LinkOnceODRLinkage
               : cir::GlobalLinkageKind::InternalLinkage;

  // An explicit instantiation of a template has weak linkage, since
  // explicit instantiations can occur in multiple translation units
  // and must all be equivalent. However, we are not allowed to
  // throw away these explicit instantiations.
  //
  // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
  // so say that CUDA templates are either external (for kernels) or internal.
  // This lets llvm perform aggressive inter-procedural optimizations. For
  // -fgpu-rdc case, device function calls across multiple TU's are allowed,
  // therefore we need to follow the normal linkage paradigm.
  if (linkage == GVA_StrongODR) {
    if (getLangOpts().AppleKext)
      return cir::GlobalLinkageKind::ExternalLinkage;
    if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
        !getLangOpts().GPURelocatableDeviceCode)
      return dd->hasAttr<CUDAGlobalAttr>()
                 ? cir::GlobalLinkageKind::ExternalLinkage
                 : cir::GlobalLinkageKind::InternalLinkage;
    return cir::GlobalLinkageKind::WeakODRLinkage;
  }

  // C++ doesn't have tentative definitions and thus cannot have common
  // linkage.
  if (!getLangOpts().CPlusPlus && isa<VarDecl>(dd) &&
      !isVarDeclStrongDefinition(astContext, *this, cast<VarDecl>(dd),
                                 getCodeGenOpts().NoCommon)) {
    errorNYI(dd->getBeginLoc(), "common linkage", dd->getDeclKindName());
    return cir::GlobalLinkageKind::CommonLinkage;
  }

  // selectany symbols are externally visible, so use weak instead of
  // linkonce.  MSVC optimizes away references to const selectany globals, so
  // all definitions should be the same and ODR linkage should be used.
  // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
  if (dd->hasAttr<SelectAnyAttr>())
    return cir::GlobalLinkageKind::WeakODRLinkage;

  // Otherwise, we have strong external linkage.
  assert(linkage == GVA_StrongExternal);
  return cir::GlobalLinkageKind::ExternalLinkage;
}

cir::GlobalLinkageKind
CIRGenModule::getCIRLinkageVarDefinition(const VarDecl *vd, bool isConstant) {
  assert(!isConstant && "constant variables NYI");
  GVALinkage linkage = astContext.GetGVALinkageForVariable(vd);
  return getCIRLinkageForDeclarator(vd, linkage, isConstant);
}

// Emit code for a single top level declaration.
void CIRGenModule::emitTopLevelDecl(Decl *decl) {

  // Ignore dependent declarations.
  if (decl->isTemplated())
    return;

  switch (decl->getKind()) {
  default:
    errorNYI(decl->getBeginLoc(), "declaration of kind",
             decl->getDeclKindName());
    break;

  case Decl::Function: {
    auto *fd = cast<FunctionDecl>(decl);
    // Consteval functions shouldn't be emitted.
    if (!fd->isConsteval())
      emitGlobal(fd);
    break;
  }

  case Decl::Var: {
    auto *vd = cast<VarDecl>(decl);
    emitGlobal(vd);
    break;
  }
  case Decl::OpenACCRoutine:
    emitGlobalOpenACCDecl(cast<OpenACCRoutineDecl>(decl));
    break;
  case Decl::OpenACCDeclare:
    emitGlobalOpenACCDecl(cast<OpenACCDeclareDecl>(decl));
    break;

  case Decl::Typedef:
  case Decl::TypeAlias: // using foo = bar; [C++11]
  case Decl::Record:
  case Decl::CXXRecord:
    assert(!cir::MissingFeatures::generateDebugInfo());
    break;
  }
}

cir::FuncOp CIRGenModule::getAddrOfFunction(clang::GlobalDecl gd,
                                            mlir::Type funcType, bool forVTable,
                                            bool dontDefer,
                                            ForDefinition_t isForDefinition) {
  assert(!cast<FunctionDecl>(gd.getDecl())->isConsteval() &&
         "consteval function should never be emitted");

  if (!funcType) {
    const auto *fd = cast<FunctionDecl>(gd.getDecl());
    funcType = convertType(fd->getType());
  }

  assert(!cir::MissingFeatures::mangledNames());
  cir::FuncOp func = getOrCreateCIRFunction(
      cast<NamedDecl>(gd.getDecl())->getIdentifier()->getName(), funcType, gd,
      forVTable, dontDefer, /*isThunk=*/false, isForDefinition);
  return func;
}

cir::FuncOp CIRGenModule::getOrCreateCIRFunction(
    StringRef mangledName, mlir::Type funcType, GlobalDecl gd, bool forVTable,
    bool dontDefer, bool isThunk, ForDefinition_t isForDefinition,
    mlir::ArrayAttr extraAttrs) {
  auto *funcDecl = llvm::cast_or_null<FunctionDecl>(gd.getDecl());
  bool invalidLoc = !funcDecl ||
                    funcDecl->getSourceRange().getBegin().isInvalid() ||
                    funcDecl->getSourceRange().getEnd().isInvalid();
  cir::FuncOp funcOp = createCIRFunction(
      invalidLoc ? theModule->getLoc() : getLoc(funcDecl->getSourceRange()),
      mangledName, mlir::cast<cir::FuncType>(funcType), funcDecl);
  return funcOp;
}

cir::FuncOp
CIRGenModule::createCIRFunction(mlir::Location loc, StringRef name,
                                cir::FuncType funcType,
                                const clang::FunctionDecl *funcDecl) {
  cir::FuncOp func;
  {
    mlir::OpBuilder::InsertionGuard guard(builder);

    // Some global emissions are triggered while emitting a function, e.g.
    // void s() { x.method() }
    //
    // Be sure to insert a new function before a current one.
    CIRGenFunction *cgf = this->curCGF;
    if (cgf)
      builder.setInsertionPoint(cgf->curFn);

    func = builder.create<cir::FuncOp>(loc, name, funcType);

    if (!cgf)
      theModule.push_back(func);
  }
  return func;
}

mlir::Type CIRGenModule::convertType(QualType type) {
  return genTypes.convertType(type);
}

bool CIRGenModule::verifyModule() const {
  // Verify the module after we have finished constructing it, this will
  // check the structural properties of the IR and invoke any specific
  // verifiers we have on the CIR operations.
  return mlir::verify(theModule).succeeded();
}

DiagnosticBuilder CIRGenModule::errorNYI(SourceLocation loc,
                                         llvm::StringRef feature) {
  unsigned diagID = diags.getCustomDiagID(
      DiagnosticsEngine::Error, "ClangIR code gen Not Yet Implemented: %0");
  return diags.Report(loc, diagID) << feature;
}

DiagnosticBuilder CIRGenModule::errorNYI(SourceRange loc,
                                         llvm::StringRef feature) {
  return errorNYI(loc.getBegin(), feature) << loc;
}