1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
#include "CIRGenBuilder.h"
#include "CIRGenFunction.h"
#include "clang/AST/StmtVisitor.h"
using namespace clang;
using namespace clang::CIRGen;
namespace {
class ComplexExprEmitter : public StmtVisitor<ComplexExprEmitter, mlir::Value> {
CIRGenFunction &cgf;
CIRGenBuilderTy &builder;
public:
explicit ComplexExprEmitter(CIRGenFunction &cgf)
: cgf(cgf), builder(cgf.getBuilder()) {}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
LValue emitBinAssignLValue(const BinaryOperator *e, mlir::Value &val);
mlir::Value emitCast(CastKind ck, Expr *op, QualType destTy);
mlir::Value emitConstant(const CIRGenFunction::ConstantEmission &constant,
Expr *e);
/// Given an expression with complex type that represents a value l-value,
/// this method emits the address of the l-value, then loads and returns the
/// result.
mlir::Value emitLoadOfLValue(const Expr *e) {
return emitLoadOfLValue(cgf.emitLValue(e), e->getExprLoc());
}
mlir::Value emitLoadOfLValue(LValue lv, SourceLocation loc);
/// Store the specified real/imag parts into the
/// specified value pointer.
void emitStoreOfComplex(mlir::Location loc, mlir::Value val, LValue lv,
bool isInit);
mlir::Value
VisitAbstractConditionalOperator(const AbstractConditionalOperator *e);
mlir::Value VisitArraySubscriptExpr(Expr *e);
mlir::Value VisitBinAssign(const BinaryOperator *e);
mlir::Value VisitBinComma(const BinaryOperator *e);
mlir::Value VisitCallExpr(const CallExpr *e);
mlir::Value VisitCastExpr(CastExpr *e);
mlir::Value VisitChooseExpr(ChooseExpr *e);
mlir::Value VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *e);
mlir::Value VisitDeclRefExpr(DeclRefExpr *e);
mlir::Value VisitGenericSelectionExpr(GenericSelectionExpr *e);
mlir::Value VisitImplicitCastExpr(ImplicitCastExpr *e);
mlir::Value VisitInitListExpr(const InitListExpr *e);
mlir::Value VisitCompoundLiteralExpr(CompoundLiteralExpr *e) {
return emitLoadOfLValue(e);
}
mlir::Value VisitImaginaryLiteral(const ImaginaryLiteral *il);
mlir::Value VisitParenExpr(ParenExpr *e);
mlir::Value
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *e);
mlir::Value VisitPrePostIncDec(const UnaryOperator *e, cir::UnaryOpKind op,
bool isPre);
mlir::Value VisitUnaryPostDec(const UnaryOperator *e) {
return VisitPrePostIncDec(e, cir::UnaryOpKind::Dec, false);
}
mlir::Value VisitUnaryPostInc(const UnaryOperator *e) {
return VisitPrePostIncDec(e, cir::UnaryOpKind::Inc, false);
}
mlir::Value VisitUnaryPreDec(const UnaryOperator *e) {
return VisitPrePostIncDec(e, cir::UnaryOpKind::Dec, true);
}
mlir::Value VisitUnaryPreInc(const UnaryOperator *e) {
return VisitPrePostIncDec(e, cir::UnaryOpKind::Inc, true);
}
mlir::Value VisitUnaryDeref(const Expr *e);
mlir::Value VisitUnaryNot(const UnaryOperator *e);
struct BinOpInfo {
mlir::Location loc;
mlir::Value lhs{};
mlir::Value rhs{};
QualType ty{}; // Computation Type.
FPOptions fpFeatures{};
};
BinOpInfo emitBinOps(const BinaryOperator *e,
QualType promotionTy = QualType());
mlir::Value emitPromoted(const Expr *e, QualType promotionTy);
mlir::Value emitPromotedComplexOperand(const Expr *e, QualType promotionTy);
mlir::Value emitBinAdd(const BinOpInfo &op);
mlir::Value emitBinSub(const BinOpInfo &op);
QualType getPromotionType(QualType ty, bool isDivOpCode = false) {
if (auto *complexTy = ty->getAs<ComplexType>()) {
QualType elementTy = complexTy->getElementType();
if (isDivOpCode && elementTy->isFloatingType() &&
cgf.getLangOpts().getComplexRange() ==
LangOptions::ComplexRangeKind::CX_Promoted) {
cgf.cgm.errorNYI("HigherPrecisionTypeForComplexArithmetic");
return QualType();
}
if (elementTy.UseExcessPrecision(cgf.getContext()))
return cgf.getContext().getComplexType(cgf.getContext().FloatTy);
}
if (ty.UseExcessPrecision(cgf.getContext()))
return cgf.getContext().FloatTy;
return QualType();
}
#define HANDLEBINOP(OP) \
mlir::Value VisitBin##OP(const BinaryOperator *e) { \
QualType promotionTy = getPromotionType( \
e->getType(), e->getOpcode() == BinaryOperatorKind::BO_Div); \
mlir::Value result = emitBin##OP(emitBinOps(e, promotionTy)); \
if (!promotionTy.isNull()) \
cgf.cgm.errorNYI("Binop emitUnPromotedValue"); \
return result; \
}
HANDLEBINOP(Add)
HANDLEBINOP(Sub)
#undef HANDLEBINOP
};
} // namespace
static const ComplexType *getComplexType(QualType type) {
type = type.getCanonicalType();
if (const ComplexType *comp = dyn_cast<ComplexType>(type))
return comp;
return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
}
LValue ComplexExprEmitter::emitBinAssignLValue(const BinaryOperator *e,
mlir::Value &value) {
assert(cgf.getContext().hasSameUnqualifiedType(e->getLHS()->getType(),
e->getRHS()->getType()) &&
"Invalid assignment");
// Emit the RHS. __block variables need the RHS evaluated first.
value = Visit(e->getRHS());
// Compute the address to store into.
LValue lhs = cgf.emitLValue(e->getLHS());
// Store the result value into the LHS lvalue.
emitStoreOfComplex(cgf.getLoc(e->getExprLoc()), value, lhs, /*isInit*/ false);
return lhs;
}
mlir::Value ComplexExprEmitter::emitCast(CastKind ck, Expr *op,
QualType destTy) {
switch (ck) {
case CK_NoOp:
case CK_LValueToRValue:
return Visit(op);
default:
break;
}
cgf.cgm.errorNYI("ComplexType Cast");
return {};
}
mlir::Value ComplexExprEmitter::emitConstant(
const CIRGenFunction::ConstantEmission &constant, Expr *e) {
assert(constant && "not a constant");
if (constant.isReference())
return emitLoadOfLValue(constant.getReferenceLValue(cgf, e),
e->getExprLoc());
mlir::TypedAttr valueAttr = constant.getValue();
return builder.getConstant(cgf.getLoc(e->getSourceRange()), valueAttr);
}
mlir::Value ComplexExprEmitter::emitLoadOfLValue(LValue lv,
SourceLocation loc) {
assert(lv.isSimple() && "non-simple complex l-value?");
if (lv.getType()->isAtomicType())
cgf.cgm.errorNYI(loc, "emitLoadOfLValue with Atomic LV");
const Address srcAddr = lv.getAddress();
return builder.createLoad(cgf.getLoc(loc), srcAddr);
}
void ComplexExprEmitter::emitStoreOfComplex(mlir::Location loc, mlir::Value val,
LValue lv, bool isInit) {
if (lv.getType()->isAtomicType() ||
(!isInit && cgf.isLValueSuitableForInlineAtomic(lv))) {
cgf.cgm.errorNYI(loc, "StoreOfComplex with Atomic LV");
return;
}
const Address destAddr = lv.getAddress();
builder.createStore(loc, val, destAddr);
}
mlir::Value ComplexExprEmitter::VisitAbstractConditionalOperator(
const AbstractConditionalOperator *e) {
mlir::Value condValue = Visit(e->getCond());
mlir::Location loc = cgf.getLoc(e->getSourceRange());
return builder
.create<cir::TernaryOp>(
loc, condValue,
/*thenBuilder=*/
[&](mlir::OpBuilder &b, mlir::Location loc) {
mlir::Value trueValue = Visit(e->getTrueExpr());
b.create<cir::YieldOp>(loc, trueValue);
},
/*elseBuilder=*/
[&](mlir::OpBuilder &b, mlir::Location loc) {
mlir::Value falseValue = Visit(e->getFalseExpr());
b.create<cir::YieldOp>(loc, falseValue);
})
.getResult();
}
mlir::Value ComplexExprEmitter::VisitArraySubscriptExpr(Expr *e) {
return emitLoadOfLValue(e);
}
mlir::Value ComplexExprEmitter::VisitBinAssign(const BinaryOperator *e) {
mlir::Value value;
LValue lv = emitBinAssignLValue(e, value);
// The result of an assignment in C is the assigned r-value.
if (!cgf.getLangOpts().CPlusPlus)
return value;
// If the lvalue is non-volatile, return the computed value of the
// assignment.
if (!lv.isVolatile())
return value;
return emitLoadOfLValue(lv, e->getExprLoc());
}
mlir::Value ComplexExprEmitter::VisitBinComma(const BinaryOperator *e) {
cgf.emitIgnoredExpr(e->getLHS());
return Visit(e->getRHS());
}
mlir::Value ComplexExprEmitter::VisitCallExpr(const CallExpr *e) {
if (e->getCallReturnType(cgf.getContext())->isReferenceType())
return emitLoadOfLValue(e);
return cgf.emitCallExpr(e).getComplexValue();
}
mlir::Value ComplexExprEmitter::VisitCastExpr(CastExpr *e) {
if (const auto *ece = dyn_cast<ExplicitCastExpr>(e)) {
// Bind VLAs in the cast type.
if (ece->getType()->isVariablyModifiedType()) {
cgf.cgm.errorNYI("VisitCastExpr Bind VLAs in the cast type");
return {};
}
}
if (e->changesVolatileQualification())
return emitLoadOfLValue(e);
return emitCast(e->getCastKind(), e->getSubExpr(), e->getType());
}
mlir::Value ComplexExprEmitter::VisitChooseExpr(ChooseExpr *e) {
return Visit(e->getChosenSubExpr());
}
mlir::Value
ComplexExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *e) {
mlir::Location loc = cgf.getLoc(e->getExprLoc());
mlir::Type complexTy = cgf.convertType(e->getType());
return builder.getNullValue(complexTy, loc);
}
mlir::Value ComplexExprEmitter::VisitDeclRefExpr(DeclRefExpr *e) {
if (CIRGenFunction::ConstantEmission constant = cgf.tryEmitAsConstant(e))
return emitConstant(constant, e);
return emitLoadOfLValue(e);
}
mlir::Value
ComplexExprEmitter::VisitGenericSelectionExpr(GenericSelectionExpr *e) {
return Visit(e->getResultExpr());
}
mlir::Value ComplexExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *e) {
// Unlike for scalars, we don't have to worry about function->ptr demotion
// here.
if (e->changesVolatileQualification())
return emitLoadOfLValue(e);
return emitCast(e->getCastKind(), e->getSubExpr(), e->getType());
}
mlir::Value ComplexExprEmitter::VisitInitListExpr(const InitListExpr *e) {
mlir::Location loc = cgf.getLoc(e->getExprLoc());
if (e->getNumInits() == 2) {
mlir::Value real = cgf.emitScalarExpr(e->getInit(0));
mlir::Value imag = cgf.emitScalarExpr(e->getInit(1));
return builder.createComplexCreate(loc, real, imag);
}
if (e->getNumInits() == 1) {
cgf.cgm.errorNYI("Create Complex with InitList with size 1");
return {};
}
assert(e->getNumInits() == 0 && "Unexpected number of inits");
mlir::Type complexTy = cgf.convertType(e->getType());
return builder.getNullValue(complexTy, loc);
}
mlir::Value
ComplexExprEmitter::VisitImaginaryLiteral(const ImaginaryLiteral *il) {
auto ty = mlir::cast<cir::ComplexType>(cgf.convertType(il->getType()));
mlir::Type elementTy = ty.getElementType();
mlir::Location loc = cgf.getLoc(il->getExprLoc());
mlir::TypedAttr realValueAttr;
mlir::TypedAttr imagValueAttr;
if (mlir::isa<cir::IntType>(elementTy)) {
llvm::APInt imagValue = cast<IntegerLiteral>(il->getSubExpr())->getValue();
realValueAttr = cir::IntAttr::get(elementTy, 0);
imagValueAttr = cir::IntAttr::get(elementTy, imagValue);
} else {
assert(mlir::isa<cir::FPTypeInterface>(elementTy) &&
"Expected complex element type to be floating-point");
llvm::APFloat imagValue =
cast<FloatingLiteral>(il->getSubExpr())->getValue();
realValueAttr = cir::FPAttr::get(
elementTy, llvm::APFloat::getZero(imagValue.getSemantics()));
imagValueAttr = cir::FPAttr::get(elementTy, imagValue);
}
auto complexAttr = cir::ConstComplexAttr::get(realValueAttr, imagValueAttr);
return builder.create<cir::ConstantOp>(loc, complexAttr);
}
mlir::Value ComplexExprEmitter::VisitParenExpr(ParenExpr *e) {
return Visit(e->getSubExpr());
}
mlir::Value ComplexExprEmitter::VisitSubstNonTypeTemplateParmExpr(
SubstNonTypeTemplateParmExpr *e) {
return Visit(e->getReplacement());
}
mlir::Value ComplexExprEmitter::VisitPrePostIncDec(const UnaryOperator *e,
cir::UnaryOpKind op,
bool isPre) {
LValue lv = cgf.emitLValue(e->getSubExpr());
return cgf.emitComplexPrePostIncDec(e, lv, op, isPre);
}
mlir::Value ComplexExprEmitter::VisitUnaryDeref(const Expr *e) {
return emitLoadOfLValue(e);
}
mlir::Value ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *e) {
mlir::Value op = Visit(e->getSubExpr());
return builder.createNot(op);
}
mlir::Value ComplexExprEmitter::emitPromoted(const Expr *e,
QualType promotionTy) {
e = e->IgnoreParens();
if (const auto *bo = dyn_cast<BinaryOperator>(e)) {
switch (bo->getOpcode()) {
#define HANDLE_BINOP(OP) \
case BO_##OP: \
return emitBin##OP(emitBinOps(bo, promotionTy));
HANDLE_BINOP(Add)
HANDLE_BINOP(Sub)
#undef HANDLE_BINOP
default:
break;
}
} else if (isa<UnaryOperator>(e)) {
cgf.cgm.errorNYI("emitPromoted UnaryOperator");
return {};
}
mlir::Value result = Visit(const_cast<Expr *>(e));
if (!promotionTy.isNull())
cgf.cgm.errorNYI("emitPromoted emitPromotedValue");
return result;
}
mlir::Value
ComplexExprEmitter::emitPromotedComplexOperand(const Expr *e,
QualType promotionTy) {
if (e->getType()->isAnyComplexType()) {
if (!promotionTy.isNull())
return cgf.emitPromotedComplexExpr(e, promotionTy);
return Visit(const_cast<Expr *>(e));
}
cgf.cgm.errorNYI("emitPromotedComplexOperand non-complex type");
return {};
}
ComplexExprEmitter::BinOpInfo
ComplexExprEmitter::emitBinOps(const BinaryOperator *e, QualType promotionTy) {
BinOpInfo binOpInfo{cgf.getLoc(e->getExprLoc())};
binOpInfo.lhs = emitPromotedComplexOperand(e->getLHS(), promotionTy);
binOpInfo.rhs = emitPromotedComplexOperand(e->getRHS(), promotionTy);
binOpInfo.ty = promotionTy.isNull() ? e->getType() : promotionTy;
binOpInfo.fpFeatures = e->getFPFeaturesInEffect(cgf.getLangOpts());
return binOpInfo;
}
mlir::Value ComplexExprEmitter::emitBinAdd(const BinOpInfo &op) {
assert(!cir::MissingFeatures::fastMathFlags());
assert(!cir::MissingFeatures::cgFPOptionsRAII());
return builder.create<cir::ComplexAddOp>(op.loc, op.lhs, op.rhs);
}
mlir::Value ComplexExprEmitter::emitBinSub(const BinOpInfo &op) {
assert(!cir::MissingFeatures::fastMathFlags());
assert(!cir::MissingFeatures::cgFPOptionsRAII());
return builder.create<cir::ComplexSubOp>(op.loc, op.lhs, op.rhs);
}
LValue CIRGenFunction::emitComplexAssignmentLValue(const BinaryOperator *e) {
assert(e->getOpcode() == BO_Assign && "Expected assign op");
mlir::Value value; // ignored
LValue lvalue = ComplexExprEmitter(*this).emitBinAssignLValue(e, value);
if (getLangOpts().OpenMP)
cgm.errorNYI("emitComplexAssignmentLValue OpenMP");
return lvalue;
}
mlir::Value CIRGenFunction::emitComplexExpr(const Expr *e) {
assert(e && getComplexType(e->getType()) &&
"Invalid complex expression to emit");
return ComplexExprEmitter(*this).Visit(const_cast<Expr *>(e));
}
mlir::Value CIRGenFunction::emitComplexPrePostIncDec(const UnaryOperator *e,
LValue lv,
cir::UnaryOpKind op,
bool isPre) {
assert(op == cir::UnaryOpKind::Inc ||
op == cir::UnaryOpKind::Dec && "Invalid UnaryOp kind for ComplexType");
mlir::Value inVal = emitLoadOfComplex(lv, e->getExprLoc());
mlir::Location loc = getLoc(e->getExprLoc());
mlir::Value incVal = builder.createUnaryOp(loc, op, inVal);
// Store the updated result through the lvalue.
emitStoreOfComplex(loc, incVal, lv, /*isInit=*/false);
if (getLangOpts().OpenMP)
cgm.errorNYI(loc, "emitComplexPrePostIncDec OpenMP");
// If this is a postinc, return the value read from memory, otherwise use the
// updated value.
return isPre ? incVal : inVal;
}
void CIRGenFunction::emitComplexExprIntoLValue(const Expr *e, LValue dest,
bool isInit) {
assert(e && getComplexType(e->getType()) &&
"Invalid complex expression to emit");
ComplexExprEmitter emitter(*this);
mlir::Value value = emitter.Visit(const_cast<Expr *>(e));
emitter.emitStoreOfComplex(getLoc(e->getExprLoc()), value, dest, isInit);
}
mlir::Value CIRGenFunction::emitLoadOfComplex(LValue src, SourceLocation loc) {
return ComplexExprEmitter(*this).emitLoadOfLValue(src, loc);
}
void CIRGenFunction::emitStoreOfComplex(mlir::Location loc, mlir::Value v,
LValue dest, bool isInit) {
ComplexExprEmitter(*this).emitStoreOfComplex(loc, v, dest, isInit);
}
mlir::Value CIRGenFunction::emitPromotedComplexExpr(const Expr *e,
QualType promotionType) {
return ComplexExprEmitter(*this).emitPromoted(e, promotionType);
}
|