1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
//===--- CIRGenExprCXX.cpp - Emit CIR Code for C++ expressions ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with code generation of C++ expressions
//
//===----------------------------------------------------------------------===//
#include "CIRGenCXXABI.h"
#include "CIRGenFunction.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/CIR/MissingFeatures.h"
using namespace clang;
using namespace clang::CIRGen;
namespace {
struct MemberCallInfo {
RequiredArgs reqArgs;
// Number of prefix arguments for the call. Ignores the `this` pointer.
unsigned prefixSize;
};
} // namespace
static MemberCallInfo commonBuildCXXMemberOrOperatorCall(
CIRGenFunction &cgf, const CXXMethodDecl *md, mlir::Value thisPtr,
mlir::Value implicitParam, QualType implicitParamTy, const CallExpr *ce,
CallArgList &args, CallArgList *rtlArgs) {
assert(ce == nullptr || isa<CXXMemberCallExpr>(ce) ||
isa<CXXOperatorCallExpr>(ce));
assert(md->isInstance() &&
"Trying to emit a member or operator call expr on a static method!");
// Push the this ptr.
const CXXRecordDecl *rd =
cgf.cgm.getCXXABI().getThisArgumentTypeForMethod(md);
args.add(RValue::get(thisPtr), cgf.getTypes().deriveThisType(rd, md));
// If there is an implicit parameter (e.g. VTT), emit it.
if (implicitParam) {
args.add(RValue::get(implicitParam), implicitParamTy);
}
const auto *fpt = md->getType()->castAs<FunctionProtoType>();
RequiredArgs required =
RequiredArgs::getFromProtoWithExtraSlots(fpt, args.size());
unsigned prefixSize = args.size() - 1;
// Add the rest of the call args
if (rtlArgs) {
// Special case: if the caller emitted the arguments right-to-left already
// (prior to emitting the *this argument), we're done. This happens for
// assignment operators.
args.addFrom(*rtlArgs);
} else if (ce) {
// Special case: skip first argument of CXXOperatorCall (it is "this").
unsigned argsToSkip = isa<CXXOperatorCallExpr>(ce) ? 1 : 0;
cgf.emitCallArgs(args, fpt, drop_begin(ce->arguments(), argsToSkip),
ce->getDirectCallee());
} else {
assert(
fpt->getNumParams() == 0 &&
"No CallExpr specified for function with non-zero number of arguments");
}
// return {required, prefixSize};
return {required, prefixSize};
}
RValue CIRGenFunction::emitCXXMemberOrOperatorMemberCallExpr(
const CallExpr *ce, const CXXMethodDecl *md, ReturnValueSlot returnValue,
bool hasQualifier, NestedNameSpecifier *qualifier, bool isArrow,
const Expr *base) {
assert(isa<CXXMemberCallExpr>(ce) || isa<CXXOperatorCallExpr>(ce));
if (md->isVirtual()) {
cgm.errorNYI(ce->getSourceRange(),
"emitCXXMemberOrOperatorMemberCallExpr: virtual call");
return RValue::get(nullptr);
}
// Note on trivial assignment
// --------------------------
// Classic codegen avoids generating the trivial copy/move assignment operator
// when it isn't necessary, choosing instead to just produce IR with an
// equivalent effect. We have chosen not to do that in CIR, instead emitting
// trivial copy/move assignment operators and allowing later transformations
// to optimize them away if appropriate.
// C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
// operator before the LHS.
CallArgList rtlArgStorage;
CallArgList *rtlArgs = nullptr;
if (auto *oce = dyn_cast<CXXOperatorCallExpr>(ce)) {
if (oce->isAssignmentOp()) {
rtlArgs = &rtlArgStorage;
emitCallArgs(*rtlArgs, md->getType()->castAs<FunctionProtoType>(),
drop_begin(ce->arguments(), 1), ce->getDirectCallee(),
/*ParamsToSkip*/ 0);
}
}
LValue thisPtr;
if (isArrow) {
LValueBaseInfo baseInfo;
assert(!cir::MissingFeatures::opTBAA());
Address thisValue = emitPointerWithAlignment(base, &baseInfo);
thisPtr = makeAddrLValue(thisValue, base->getType(), baseInfo);
} else {
thisPtr = emitLValue(base);
}
if (isa<CXXConstructorDecl>(md)) {
cgm.errorNYI(ce->getSourceRange(),
"emitCXXMemberOrOperatorMemberCallExpr: constructor call");
return RValue::get(nullptr);
}
if ((md->isTrivial() || (md->isDefaulted() && md->getParent()->isUnion())) &&
isa<CXXDestructorDecl>(md))
return RValue::get(nullptr);
// Compute the function type we're calling
const CXXMethodDecl *calleeDecl = md;
const CIRGenFunctionInfo *fInfo = nullptr;
if (isa<CXXDestructorDecl>(calleeDecl)) {
cgm.errorNYI(ce->getSourceRange(),
"emitCXXMemberOrOperatorMemberCallExpr: destructor call");
return RValue::get(nullptr);
}
fInfo = &cgm.getTypes().arrangeCXXMethodDeclaration(calleeDecl);
mlir::Type ty = cgm.getTypes().getFunctionType(*fInfo);
assert(!cir::MissingFeatures::sanitizers());
assert(!cir::MissingFeatures::emitTypeCheck());
if (isa<CXXDestructorDecl>(calleeDecl)) {
cgm.errorNYI(ce->getSourceRange(),
"emitCXXMemberOrOperatorMemberCallExpr: destructor call");
return RValue::get(nullptr);
}
assert(!cir::MissingFeatures::sanitizers());
if (getLangOpts().AppleKext) {
cgm.errorNYI(ce->getSourceRange(),
"emitCXXMemberOrOperatorMemberCallExpr: AppleKext");
return RValue::get(nullptr);
}
CIRGenCallee callee =
CIRGenCallee::forDirect(cgm.getAddrOfFunction(md, ty), GlobalDecl(md));
return emitCXXMemberOrOperatorCall(
calleeDecl, callee, returnValue, thisPtr.getPointer(),
/*ImplicitParam=*/nullptr, QualType(), ce, rtlArgs);
}
RValue
CIRGenFunction::emitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *e,
const CXXMethodDecl *md,
ReturnValueSlot returnValue) {
assert(md->isInstance() &&
"Trying to emit a member call expr on a static method!");
return emitCXXMemberOrOperatorMemberCallExpr(
e, md, returnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
/*IsArrow=*/false, e->getArg(0));
}
RValue CIRGenFunction::emitCXXMemberOrOperatorCall(
const CXXMethodDecl *md, const CIRGenCallee &callee,
ReturnValueSlot returnValue, mlir::Value thisPtr, mlir::Value implicitParam,
QualType implicitParamTy, const CallExpr *ce, CallArgList *rtlArgs) {
const auto *fpt = md->getType()->castAs<FunctionProtoType>();
CallArgList args;
MemberCallInfo callInfo = commonBuildCXXMemberOrOperatorCall(
*this, md, thisPtr, implicitParam, implicitParamTy, ce, args, rtlArgs);
auto &fnInfo = cgm.getTypes().arrangeCXXMethodCall(
args, fpt, callInfo.reqArgs, callInfo.prefixSize);
assert((ce || currSrcLoc) && "expected source location");
mlir::Location loc = ce ? getLoc(ce->getExprLoc()) : *currSrcLoc;
assert(!cir::MissingFeatures::opCallMustTail());
return emitCall(fnInfo, callee, returnValue, args, nullptr, loc);
}
static mlir::Value emitCXXNewAllocSize(CIRGenFunction &cgf, const CXXNewExpr *e,
unsigned minElements,
mlir::Value &numElements,
mlir::Value &sizeWithoutCookie) {
QualType type = e->getAllocatedType();
mlir::Location loc = cgf.getLoc(e->getSourceRange());
if (!e->isArray()) {
CharUnits typeSize = cgf.getContext().getTypeSizeInChars(type);
sizeWithoutCookie = cgf.getBuilder().getConstant(
loc, cir::IntAttr::get(cgf.SizeTy, typeSize.getQuantity()));
return sizeWithoutCookie;
}
cgf.cgm.errorNYI(e->getSourceRange(), "emitCXXNewAllocSize: array");
return {};
}
static void storeAnyExprIntoOneUnit(CIRGenFunction &cgf, const Expr *init,
QualType allocType, Address newPtr,
AggValueSlot::Overlap_t mayOverlap) {
// FIXME: Refactor with emitExprAsInit.
switch (cgf.getEvaluationKind(allocType)) {
case cir::TEK_Scalar:
cgf.emitScalarInit(init, cgf.getLoc(init->getSourceRange()),
cgf.makeAddrLValue(newPtr, allocType), false);
return;
case cir::TEK_Complex:
cgf.cgm.errorNYI(init->getSourceRange(),
"storeAnyExprIntoOneUnit: complex");
return;
case cir::TEK_Aggregate: {
assert(!cir::MissingFeatures::aggValueSlotGC());
assert(!cir::MissingFeatures::sanitizers());
AggValueSlot slot = AggValueSlot::forAddr(
newPtr, allocType.getQualifiers(), AggValueSlot::IsDestructed,
AggValueSlot::IsNotAliased, mayOverlap, AggValueSlot::IsNotZeroed);
cgf.emitAggExpr(init, slot);
return;
}
}
llvm_unreachable("bad evaluation kind");
}
static void emitNewInitializer(CIRGenFunction &cgf, const CXXNewExpr *e,
QualType elementType, mlir::Type elementTy,
Address newPtr, mlir::Value numElements,
mlir::Value allocSizeWithoutCookie) {
assert(!cir::MissingFeatures::generateDebugInfo());
if (e->isArray()) {
cgf.cgm.errorNYI(e->getSourceRange(), "emitNewInitializer: array");
} else if (const Expr *init = e->getInitializer()) {
storeAnyExprIntoOneUnit(cgf, init, e->getAllocatedType(), newPtr,
AggValueSlot::DoesNotOverlap);
}
}
RValue CIRGenFunction::emitCXXDestructorCall(
GlobalDecl dtor, const CIRGenCallee &callee, mlir::Value thisVal,
QualType thisTy, mlir::Value implicitParam, QualType implicitParamTy,
const CallExpr *ce) {
const CXXMethodDecl *dtorDecl = cast<CXXMethodDecl>(dtor.getDecl());
assert(!thisTy.isNull());
assert(thisTy->getAsCXXRecordDecl() == dtorDecl->getParent() &&
"Pointer/Object mixup");
assert(!cir::MissingFeatures::addressSpace());
CallArgList args;
commonBuildCXXMemberOrOperatorCall(*this, dtorDecl, thisVal, implicitParam,
implicitParamTy, ce, args, nullptr);
assert((ce || dtor.getDecl()) && "expected source location provider");
assert(!cir::MissingFeatures::opCallMustTail());
return emitCall(cgm.getTypes().arrangeCXXStructorDeclaration(dtor), callee,
ReturnValueSlot(), args, nullptr,
ce ? getLoc(ce->getExprLoc())
: getLoc(dtor.getDecl()->getSourceRange()));
}
/// Emit a call to an operator new or operator delete function, as implicitly
/// created by new-expressions and delete-expressions.
static RValue emitNewDeleteCall(CIRGenFunction &cgf,
const FunctionDecl *calleeDecl,
const FunctionProtoType *calleeType,
const CallArgList &args) {
cir::CIRCallOpInterface callOrTryCall;
cir::FuncOp calleePtr = cgf.cgm.getAddrOfFunction(calleeDecl);
CIRGenCallee callee =
CIRGenCallee::forDirect(calleePtr, GlobalDecl(calleeDecl));
RValue rv =
cgf.emitCall(cgf.cgm.getTypes().arrangeFreeFunctionCall(args, calleeType),
callee, ReturnValueSlot(), args, &callOrTryCall);
/// C++1y [expr.new]p10:
/// [In a new-expression,] an implementation is allowed to omit a call
/// to a replaceable global allocation function.
///
/// We model such elidable calls with the 'builtin' attribute.
assert(!cir::MissingFeatures::attributeBuiltin());
return rv;
}
mlir::Value CIRGenFunction::emitCXXNewExpr(const CXXNewExpr *e) {
// The element type being allocated.
QualType allocType = getContext().getBaseElementType(e->getAllocatedType());
// 1. Build a call to the allocation function.
FunctionDecl *allocator = e->getOperatorNew();
// If there is a brace-initializer, cannot allocate fewer elements than inits.
unsigned minElements = 0;
if (e->isArray() && e->hasInitializer()) {
cgm.errorNYI(e->getSourceRange(), "emitCXXNewExpr: array initializer");
}
mlir::Value numElements = nullptr;
mlir::Value allocSizeWithoutCookie = nullptr;
mlir::Value allocSize = emitCXXNewAllocSize(
*this, e, minElements, numElements, allocSizeWithoutCookie);
CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
// Emit the allocation call.
Address allocation = Address::invalid();
CallArgList allocatorArgs;
if (allocator->isReservedGlobalPlacementOperator()) {
cgm.errorNYI(e->getSourceRange(),
"emitCXXNewExpr: reserved global placement operator");
} else {
const FunctionProtoType *allocatorType =
allocator->getType()->castAs<FunctionProtoType>();
unsigned paramsToSkip = 0;
// The allocation size is the first argument.
QualType sizeType = getContext().getSizeType();
allocatorArgs.add(RValue::get(allocSize), sizeType);
++paramsToSkip;
if (allocSize != allocSizeWithoutCookie) {
CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
allocAlign = std::max(allocAlign, cookieAlign);
}
// The allocation alignment may be passed as the second argument.
if (e->passAlignment()) {
cgm.errorNYI(e->getSourceRange(), "emitCXXNewExpr: pass alignment");
}
// FIXME: Why do we not pass a CalleeDecl here?
emitCallArgs(allocatorArgs, allocatorType, e->placement_arguments(),
AbstractCallee(), paramsToSkip);
RValue rv =
emitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
// Set !heapallocsite metadata on the call to operator new.
assert(!cir::MissingFeatures::generateDebugInfo());
// If this was a call to a global replaceable allocation function that does
// not take an alignment argument, the allocator is known to produce storage
// that's suitably aligned for any object that fits, up to a known
// threshold. Otherwise assume it's suitably aligned for the allocated type.
CharUnits allocationAlign = allocAlign;
if (!e->passAlignment() &&
allocator->isReplaceableGlobalAllocationFunction()) {
const TargetInfo &target = cgm.getASTContext().getTargetInfo();
unsigned allocatorAlign = llvm::bit_floor(std::min<uint64_t>(
target.getNewAlign(), getContext().getTypeSize(allocType)));
allocationAlign = std::max(
allocationAlign, getContext().toCharUnitsFromBits(allocatorAlign));
}
mlir::Value allocPtr = rv.getValue();
allocation = Address(
allocPtr, mlir::cast<cir::PointerType>(allocPtr.getType()).getPointee(),
allocationAlign);
}
// Emit a null check on the allocation result if the allocation
// function is allowed to return null (because it has a non-throwing
// exception spec or is the reserved placement new) and we have an
// interesting initializer will be running sanitizers on the initialization.
bool nullCheck = e->shouldNullCheckAllocation() &&
(!allocType.isPODType(getContext()) || e->hasInitializer());
assert(!cir::MissingFeatures::exprNewNullCheck());
if (nullCheck)
cgm.errorNYI(e->getSourceRange(), "emitCXXNewExpr: null check");
// If there's an operator delete, enter a cleanup to call it if an
// exception is thrown.
if (e->getOperatorDelete() &&
!e->getOperatorDelete()->isReservedGlobalPlacementOperator())
cgm.errorNYI(e->getSourceRange(), "emitCXXNewExpr: operator delete");
if (allocSize != allocSizeWithoutCookie)
cgm.errorNYI(e->getSourceRange(), "emitCXXNewExpr: array with cookies");
mlir::Type elementTy = convertTypeForMem(allocType);
Address result = builder.createElementBitCast(getLoc(e->getSourceRange()),
allocation, elementTy);
// Passing pointer through launder.invariant.group to avoid propagation of
// vptrs information which may be included in previous type.
// To not break LTO with different optimizations levels, we do it regardless
// of optimization level.
if (cgm.getCodeGenOpts().StrictVTablePointers &&
allocator->isReservedGlobalPlacementOperator())
cgm.errorNYI(e->getSourceRange(), "emitCXXNewExpr: strict vtable pointers");
assert(!cir::MissingFeatures::sanitizers());
emitNewInitializer(*this, e, allocType, elementTy, result, numElements,
allocSizeWithoutCookie);
return result.getPointer();
}
|