aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Analysis/ReachableCode.cpp
blob: 4220000cd334794732a91bc20b7ca8cfefc2fdf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
//=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a flow-sensitive, path-insensitive analysis of
// determining reachable blocks within a CFG.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/Analyses/ReachableCode.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/ParentMap.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"

using namespace clang;

//===----------------------------------------------------------------------===//
// Core Reachability Analysis routines.
//===----------------------------------------------------------------------===//

static bool isEnumConstant(const Expr *Ex) {
  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
  if (!DR)
    return false;
  return isa<EnumConstantDecl>(DR->getDecl());
}

static bool isTrivialExpression(const Expr *Ex) {
  Ex = Ex->IgnoreParenCasts();
  return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
         isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
         isa<CharacterLiteral>(Ex) ||
         isEnumConstant(Ex);
}

static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
  // Check if the block ends with a do...while() and see if 'S' is the
  // condition.
  if (const Stmt *Term = B->getTerminator()) {
    if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
      const Expr *Cond = DS->getCond()->IgnoreParenCasts();
      return Cond == S && isTrivialExpression(Cond);
    }
  }
  return false;
}

static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
  // Look to see if the block ends with a 'return', and see if 'S'
  // is a substatement.  The 'return' may not be the last element in
  // the block because of destructors.
  for (CFGBlock::const_reverse_iterator I = B->rbegin(), E = B->rend();
       I != E; ++I) {
    if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
      if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
        if (RS == S)
          return true;
        if (const Expr *RE = RS->getRetValue()) {
          RE = RE->IgnoreParenCasts();
          if (RE == S)
            return true;
          ParentMap PM(const_cast<Expr*>(RE));
          // If 'S' is in the ParentMap, it is a subexpression of
          // the return statement.  Note also that we are restricting
          // to looking at return statements in the same CFGBlock,
          // so this will intentionally not catch cases where the
          // return statement contains nested control-flow.
          return PM.getParent(S);
        }
      }
      break;
    }
  }
  return false;
}

static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
  assert(Loc.isMacroID());
  SourceLocation Last;
  while (Loc.isMacroID()) {
    Last = Loc;
    Loc = SM.getImmediateMacroCallerLoc(Loc);
  }
  return Last;
}

/// Returns true if the statement is expanded from a configuration macro.
static bool isExpandedFromConfigurationMacro(const Stmt *S,
                                             Preprocessor &PP,
                                             bool IgnoreYES_NO = false) {
  // FIXME: This is not very precise.  Here we just check to see if the
  // value comes from a macro, but we can do much better.  This is likely
  // to be over conservative.  This logic is factored into a separate function
  // so that we can refine it later.
  SourceLocation L = S->getLocStart();
  if (L.isMacroID()) {
    if (IgnoreYES_NO) {
      // The Objective-C constant 'YES' and 'NO'
      // are defined as macros.  Do not treat them
      // as configuration values.
      SourceManager &SM = PP.getSourceManager();
      SourceLocation TopL = getTopMostMacro(L, SM);
      StringRef MacroName = PP.getImmediateMacroName(TopL);
      if (MacroName == "YES" || MacroName == "NO")
        return false;
    }
    return true;
  }
  return false;
}

static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);

/// Returns true if the statement represents a configuration value.
///
/// A configuration value is something usually determined at compile-time
/// to conditionally always execute some branch.  Such guards are for
/// "sometimes unreachable" code.  Such code is usually not interesting
/// to report as unreachable, and may mask truly unreachable code within
/// those blocks.
static bool isConfigurationValue(const Stmt *S,
                                 Preprocessor &PP,
                                 bool IncludeIntegers = true) {
  if (!S)
    return false;

  if (const Expr *Ex = dyn_cast<Expr>(S))
    S = Ex->IgnoreParenCasts();

  switch (S->getStmtClass()) {
    case Stmt::CallExprClass: {
      const FunctionDecl *Callee =
        dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
      return Callee ? Callee->isConstexpr() : false;
    }
    case Stmt::DeclRefExprClass:
      return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
    case Stmt::IntegerLiteralClass:
      return IncludeIntegers ? isExpandedFromConfigurationMacro(S, PP)
                             : false;
    case Stmt::MemberExprClass:
      return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
    case Stmt::ObjCBoolLiteralExprClass:
      return isExpandedFromConfigurationMacro(S, PP, /* IgnoreYES_NO */ true);
    case Stmt::UnaryExprOrTypeTraitExprClass:
      return true;
    case Stmt::BinaryOperatorClass: {
      const BinaryOperator *B = cast<BinaryOperator>(S);
      // Only include raw integers (not enums) as configuration
      // values if they are used in a logical or comparison operator
      // (not arithmetic).
      IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
      return isConfigurationValue(B->getLHS(), PP, IncludeIntegers) ||
             isConfigurationValue(B->getRHS(), PP, IncludeIntegers);
    }
    case Stmt::UnaryOperatorClass: {
      const UnaryOperator *UO = cast<UnaryOperator>(S);
      return UO->getOpcode() == UO_LNot &&
             isConfigurationValue(UO->getSubExpr(), PP);
    }
    default:
      return false;
  }
}

static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
  if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
    return isConfigurationValue(ED->getInitExpr(), PP);
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    // As a heuristic, treat globals as configuration values.  Note
    // that we only will get here if Sema evaluated this
    // condition to a constant expression, which means the global
    // had to be declared in a way to be a truly constant value.
    // We could generalize this to local variables, but it isn't
    // clear if those truly represent configuration values that
    // gate unreachable code.
    if (!VD->hasLocalStorage())
      return true;

    // As a heuristic, locals that have been marked 'const' explicitly
    // can be treated as configuration values as well.
    return VD->getType().isLocalConstQualified();
  }
  return false;
}

/// Returns true if we should always explore all successors of a block.
static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
                                             Preprocessor &PP) {
  if (const Stmt *Term = B->getTerminator()) {
    if (isa<SwitchStmt>(Term))
      return true;
    // Specially handle '||' and '&&'.
    if (isa<BinaryOperator>(Term))
      return isConfigurationValue(Term, PP);
  }

  return isConfigurationValue(B->getTerminatorCondition(), PP);
}

static unsigned scanFromBlock(const CFGBlock *Start,
                              llvm::BitVector &Reachable,
                              Preprocessor *PP,
                              bool IncludeSometimesUnreachableEdges) {
  unsigned count = 0;
  
  // Prep work queue
  SmallVector<const CFGBlock*, 32> WL;
  
  // The entry block may have already been marked reachable
  // by the caller.
  if (!Reachable[Start->getBlockID()]) {
    ++count;
    Reachable[Start->getBlockID()] = true;
  }
  
  WL.push_back(Start);
  
  // Find the reachable blocks from 'Start'.
  while (!WL.empty()) {
    const CFGBlock *item = WL.pop_back_val();

    // There are cases where we want to treat all successors as reachable.
    // The idea is that some "sometimes unreachable" code is not interesting,
    // and that we should forge ahead and explore those branches anyway.
    // This allows us to potentially uncover some "always unreachable" code
    // within the "sometimes unreachable" code.
    // Look at the successors and mark then reachable.
    Optional<bool> TreatAllSuccessorsAsReachable;
    if (!IncludeSometimesUnreachableEdges)
      TreatAllSuccessorsAsReachable = false;

    for (CFGBlock::const_succ_iterator I = item->succ_begin(), 
         E = item->succ_end(); I != E; ++I) {
      const CFGBlock *B = *I;
      if (!B) do {
        const CFGBlock *UB = I->getPossiblyUnreachableBlock();
        if (!UB)
          break;

        if (!TreatAllSuccessorsAsReachable.hasValue()) {
          assert(PP);
          TreatAllSuccessorsAsReachable =
            shouldTreatSuccessorsAsReachable(item, *PP);
        }

        if (TreatAllSuccessorsAsReachable.getValue()) {
          B = UB;
          break;
        }
      }
      while (false);

      if (B) {
        unsigned blockID = B->getBlockID();
        if (!Reachable[blockID]) {
          Reachable.set(blockID);
          WL.push_back(B);
          ++count;
        }
      }
    }
  }
  return count;
}

static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
                                            Preprocessor &PP,
                                            llvm::BitVector &Reachable) {
  return scanFromBlock(Start, Reachable, &PP, true);
}

//===----------------------------------------------------------------------===//
// Dead Code Scanner.
//===----------------------------------------------------------------------===//

namespace {
  class DeadCodeScan {
    llvm::BitVector Visited;
    llvm::BitVector &Reachable;
    SmallVector<const CFGBlock *, 10> WorkList;
    Preprocessor &PP;

    typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
    DeferredLocsTy;

    DeferredLocsTy DeferredLocs;

  public:
    DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP)
    : Visited(reachable.size()),
      Reachable(reachable),
      PP(PP) {}

    void enqueue(const CFGBlock *block);
    unsigned scanBackwards(const CFGBlock *Start,
    clang::reachable_code::Callback &CB);

    bool isDeadCodeRoot(const CFGBlock *Block);

    const Stmt *findDeadCode(const CFGBlock *Block);

    void reportDeadCode(const CFGBlock *B,
    const Stmt *S,
    clang::reachable_code::Callback &CB);
    };
}

void DeadCodeScan::enqueue(const CFGBlock *block) {
  unsigned blockID = block->getBlockID();
  if (Reachable[blockID] || Visited[blockID])
    return;
  Visited[blockID] = true;
  WorkList.push_back(block);
}

bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
  bool isDeadRoot = true;

  for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
       E = Block->pred_end(); I != E; ++I) {
    if (const CFGBlock *PredBlock = *I) {
      unsigned blockID = PredBlock->getBlockID();
      if (Visited[blockID]) {
        isDeadRoot = false;
        continue;
      }
      if (!Reachable[blockID]) {
        isDeadRoot = false;
        Visited[blockID] = true;
        WorkList.push_back(PredBlock);
        continue;
      }
    }
  }

  return isDeadRoot;
}

static bool isValidDeadStmt(const Stmt *S) {
  if (S->getLocStart().isInvalid())
    return false;
  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
    return BO->getOpcode() != BO_Comma;
  return true;
}

const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
  for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
    if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
      const Stmt *S = CS->getStmt();
      if (isValidDeadStmt(S))
        return S;
    }

  if (CFGTerminator T = Block->getTerminator()) {
    if (!T.isTemporaryDtorsBranch()) {
      const Stmt *S = T.getStmt();
      if (isValidDeadStmt(S))
        return S;
    }
  }

  return 0;
}

static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
                  const std::pair<const CFGBlock *, const Stmt *> *p2) {
  if (p1->second->getLocStart() < p2->second->getLocStart())
    return -1;
  if (p2->second->getLocStart() < p1->second->getLocStart())
    return 1;
  return 0;
}

unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
                                     clang::reachable_code::Callback &CB) {

  unsigned count = 0;
  enqueue(Start);

  while (!WorkList.empty()) {
    const CFGBlock *Block = WorkList.pop_back_val();

    // It is possible that this block has been marked reachable after
    // it was enqueued.
    if (Reachable[Block->getBlockID()])
      continue;

    // Look for any dead code within the block.
    const Stmt *S = findDeadCode(Block);

    if (!S) {
      // No dead code.  Possibly an empty block.  Look at dead predecessors.
      for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
           E = Block->pred_end(); I != E; ++I) {
        if (const CFGBlock *predBlock = *I)
          enqueue(predBlock);
      }
      continue;
    }

    // Specially handle macro-expanded code.
    if (S->getLocStart().isMacroID()) {
      count += scanMaybeReachableFromBlock(Block, PP, Reachable);
      continue;
    }

    if (isDeadCodeRoot(Block)) {
      reportDeadCode(Block, S, CB);
      count += scanMaybeReachableFromBlock(Block, PP, Reachable);
    }
    else {
      // Record this statement as the possibly best location in a
      // strongly-connected component of dead code for emitting a
      // warning.
      DeferredLocs.push_back(std::make_pair(Block, S));
    }
  }

  // If we didn't find a dead root, then report the dead code with the
  // earliest location.
  if (!DeferredLocs.empty()) {
    llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
    for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
         E = DeferredLocs.end(); I != E; ++I) {
      const CFGBlock *Block = I->first;
      if (Reachable[Block->getBlockID()])
        continue;
      reportDeadCode(Block, I->second, CB);
      count += scanMaybeReachableFromBlock(Block, PP, Reachable);
    }
  }

  return count;
}

static SourceLocation GetUnreachableLoc(const Stmt *S,
                                        SourceRange &R1,
                                        SourceRange &R2) {
  R1 = R2 = SourceRange();

  if (const Expr *Ex = dyn_cast<Expr>(S))
    S = Ex->IgnoreParenImpCasts();

  switch (S->getStmtClass()) {
    case Expr::BinaryOperatorClass: {
      const BinaryOperator *BO = cast<BinaryOperator>(S);
      return BO->getOperatorLoc();
    }
    case Expr::UnaryOperatorClass: {
      const UnaryOperator *UO = cast<UnaryOperator>(S);
      R1 = UO->getSubExpr()->getSourceRange();
      return UO->getOperatorLoc();
    }
    case Expr::CompoundAssignOperatorClass: {
      const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
      R1 = CAO->getLHS()->getSourceRange();
      R2 = CAO->getRHS()->getSourceRange();
      return CAO->getOperatorLoc();
    }
    case Expr::BinaryConditionalOperatorClass:
    case Expr::ConditionalOperatorClass: {
      const AbstractConditionalOperator *CO =
      cast<AbstractConditionalOperator>(S);
      return CO->getQuestionLoc();
    }
    case Expr::MemberExprClass: {
      const MemberExpr *ME = cast<MemberExpr>(S);
      R1 = ME->getSourceRange();
      return ME->getMemberLoc();
    }
    case Expr::ArraySubscriptExprClass: {
      const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
      R1 = ASE->getLHS()->getSourceRange();
      R2 = ASE->getRHS()->getSourceRange();
      return ASE->getRBracketLoc();
    }
    case Expr::CStyleCastExprClass: {
      const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
      R1 = CSC->getSubExpr()->getSourceRange();
      return CSC->getLParenLoc();
    }
    case Expr::CXXFunctionalCastExprClass: {
      const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
      R1 = CE->getSubExpr()->getSourceRange();
      return CE->getLocStart();
    }
    case Stmt::CXXTryStmtClass: {
      return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
    }
    case Expr::ObjCBridgedCastExprClass: {
      const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
      R1 = CSC->getSubExpr()->getSourceRange();
      return CSC->getLParenLoc();
    }
    default: ;
  }
  R1 = S->getSourceRange();
  return S->getLocStart();
}

void DeadCodeScan::reportDeadCode(const CFGBlock *B,
                                  const Stmt *S,
                                  clang::reachable_code::Callback &CB) {
  // Classify the unreachable code found, or suppress it in some cases.
  reachable_code::UnreachableKind UK = reachable_code::UK_Other;

  if (isa<BreakStmt>(S)) {
    UK = reachable_code::UK_Break;
  }
  else if (isTrivialDoWhile(B, S)) {
    return;
  }
  else if (isDeadReturn(B, S)) {
    UK = reachable_code::UK_Return;
  }

  SourceRange R1, R2;
  SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
  CB.HandleUnreachable(UK, Loc, R1, R2);
}

//===----------------------------------------------------------------------===//
// Reachability APIs.
//===----------------------------------------------------------------------===//

namespace clang { namespace reachable_code {

void Callback::anchor() { }

unsigned ScanReachableFromBlock(const CFGBlock *Start,
                                llvm::BitVector &Reachable) {
  return scanFromBlock(Start, Reachable, /* SourceManager* */ 0, false);
}

void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
                         Callback &CB) {

  CFG *cfg = AC.getCFG();
  if (!cfg)
    return;

  // Scan for reachable blocks from the entrance of the CFG.
  // If there are no unreachable blocks, we're done.
  llvm::BitVector reachable(cfg->getNumBlockIDs());
  unsigned numReachable =
    scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
  if (numReachable == cfg->getNumBlockIDs())
    return;
  
  // If there aren't explicit EH edges, we should include the 'try' dispatch
  // blocks as roots.
  if (!AC.getCFGBuildOptions().AddEHEdges) {
    for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
         E = cfg->try_blocks_end() ; I != E; ++I) {
      numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
    }
    if (numReachable == cfg->getNumBlockIDs())
      return;
  }

  // There are some unreachable blocks.  We need to find the root blocks that
  // contain code that should be considered unreachable.  
  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
    const CFGBlock *block = *I;
    // A block may have been marked reachable during this loop.
    if (reachable[block->getBlockID()])
      continue;
    
    DeadCodeScan DS(reachable, PP);
    numReachable += DS.scanBackwards(block, CB);
    
    if (numReachable == cfg->getNumBlockIDs())
      return;
  }
}

}} // end namespace clang::reachable_code