aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp
blob: a39f0e0b29ad166ba67d92d98327846452de6f59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
//===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines a SAT solver implementation that can be used by dataflow
//  analyses.
//
//===----------------------------------------------------------------------===//

#include <cassert>
#include <vector>

#include "clang/Analysis/FlowSensitive/CNFFormula.h"
#include "clang/Analysis/FlowSensitive/Formula.h"
#include "clang/Analysis/FlowSensitive/Solver.h"
#include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"


namespace clang {
namespace dataflow {

namespace {

class WatchedLiteralsSolverImpl {
  /// Stores the variable identifier and Atom for atomic booleans in the
  /// formula.
  llvm::DenseMap<Variable, Atom> Atomics;

  /// A boolean formula in conjunctive normal form that the solver will attempt
  /// to prove satisfiable. The formula will be modified in the process.
  CNFFormula CNF;

  /// Maps literals (indices of the vector) to clause identifiers (elements of
  /// the vector) that watch the respective literals.
  ///
  /// For a given clause, its watched literal is always its first literal in
  /// `Clauses`. This invariant is maintained when watched literals change.
  std::vector<ClauseID> WatchedHead;

  /// Maps clause identifiers (elements of the vector) to identifiers of other
  /// clauses that watch the same literals, forming a set of linked lists.
  ///
  /// The element at index 0 stands for the identifier of the clause that
  /// follows the null clause. It is set to 0 and isn't used. Identifiers of
  /// clauses in the formula start from the element at index 1.
  std::vector<ClauseID> NextWatched;

  /// The search for a satisfying assignment of the variables in `Formula` will
  /// proceed in levels, starting from 1 and going up to `Formula.LargestVar`
  /// (inclusive). The current level is stored in `Level`. At each level the
  /// solver will assign a value to an unassigned variable. If this leads to a
  /// consistent partial assignment, `Level` will be incremented. Otherwise, if
  /// it results in a conflict, the solver will backtrack by decrementing
  /// `Level` until it reaches the most recent level where a decision was made.
  size_t Level = 0;

  /// Maps levels (indices of the vector) to variables (elements of the vector)
  /// that are assigned values at the respective levels.
  ///
  /// The element at index 0 isn't used. Variables start from the element at
  /// index 1.
  std::vector<Variable> LevelVars;

  /// State of the solver at a particular level.
  enum class State : uint8_t {
    /// Indicates that the solver made a decision.
    Decision = 0,

    /// Indicates that the solver made a forced move.
    Forced = 1,
  };

  /// State of the solver at a particular level. It keeps track of previous
  /// decisions that the solver can refer to when backtracking.
  ///
  /// The element at index 0 isn't used. States start from the element at index
  /// 1.
  std::vector<State> LevelStates;

  enum class Assignment : int8_t {
    Unassigned = -1,
    AssignedFalse = 0,
    AssignedTrue = 1
  };

  /// Maps variables (indices of the vector) to their assignments (elements of
  /// the vector).
  ///
  /// The element at index 0 isn't used. Variable assignments start from the
  /// element at index 1.
  std::vector<Assignment> VarAssignments;

  /// A set of unassigned variables that appear in watched literals in
  /// `Formula`. The vector is guaranteed to contain unique elements.
  std::vector<Variable> ActiveVars;

public:
  explicit WatchedLiteralsSolverImpl(
      const llvm::ArrayRef<const Formula *> &Vals)
      // `Atomics` needs to be initialized first so that we can use it as an
      // output argument of `buildCNF()`.
      : Atomics(), CNF(buildCNF(Vals, Atomics)),
        LevelVars(CNF.largestVar() + 1), LevelStates(CNF.largestVar() + 1) {
    assert(!Vals.empty());

    // Skip initialization if the formula is known to be contradictory.
    if (CNF.knownContradictory())
      return;

    // Initialize `NextWatched` and `WatchedHead`.
    NextWatched.push_back(0);
    const size_t NumLiterals = 2 * CNF.largestVar() + 1;
    WatchedHead.resize(NumLiterals + 1, 0);
    for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
      // Designate the first literal as the "watched" literal of the clause.
      Literal FirstLit = CNF.clauseLiterals(C).front();
      NextWatched.push_back(WatchedHead[FirstLit]);
      WatchedHead[FirstLit] = C;
    }

    // Initialize the state at the root level to a decision so that in
    // `reverseForcedMoves` we don't have to check that `Level >= 0` on each
    // iteration.
    LevelStates[0] = State::Decision;

    // Initialize all variables as unassigned.
    VarAssignments.resize(CNF.largestVar() + 1, Assignment::Unassigned);

    // Initialize the active variables.
    for (Variable Var = CNF.largestVar(); Var != NullVar; --Var) {
      if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
        ActiveVars.push_back(Var);
    }
  }

  // Returns the `Result` and the number of iterations "remaining" from
  // `MaxIterations` (that is, `MaxIterations` - iterations in this call).
  std::pair<Solver::Result, std::int64_t> solve(std::int64_t MaxIterations) && {
    if (CNF.knownContradictory()) {
      // Short-cut the solving process. We already found out at CNF
      // construction time that the formula is unsatisfiable.
      return std::make_pair(Solver::Result::Unsatisfiable(), MaxIterations);
    }
    size_t I = 0;
    while (I < ActiveVars.size()) {
      if (MaxIterations == 0)
        return std::make_pair(Solver::Result::TimedOut(), 0);
      --MaxIterations;

      // Assert that the following invariants hold:
      // 1. All active variables are unassigned.
      // 2. All active variables form watched literals.
      // 3. Unassigned variables that form watched literals are active.
      // FIXME: Consider replacing these with test cases that fail if the any
      // of the invariants is broken. That might not be easy due to the
      // transformations performed by `buildCNF`.
      assert(activeVarsAreUnassigned());
      assert(activeVarsFormWatchedLiterals());
      assert(unassignedVarsFormingWatchedLiteralsAreActive());

      const Variable ActiveVar = ActiveVars[I];

      // Look for unit clauses that contain the active variable.
      const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar));
      const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar));
      if (unitPosLit && unitNegLit) {
        // We found a conflict!

        // Backtrack and rewind the `Level` until the most recent non-forced
        // assignment.
        reverseForcedMoves();

        // If the root level is reached, then all possible assignments lead to
        // a conflict.
        if (Level == 0)
          return std::make_pair(Solver::Result::Unsatisfiable(), MaxIterations);

        // Otherwise, take the other branch at the most recent level where a
        // decision was made.
        LevelStates[Level] = State::Forced;
        const Variable Var = LevelVars[Level];
        VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue
                                  ? Assignment::AssignedFalse
                                  : Assignment::AssignedTrue;

        updateWatchedLiterals();
      } else if (unitPosLit || unitNegLit) {
        // We found a unit clause! The value of its unassigned variable is
        // forced.
        ++Level;

        LevelVars[Level] = ActiveVar;
        LevelStates[Level] = State::Forced;
        VarAssignments[ActiveVar] =
            unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse;

        // Remove the variable that was just assigned from the set of active
        // variables.
        if (I + 1 < ActiveVars.size()) {
          // Replace the variable that was just assigned with the last active
          // variable for efficient removal.
          ActiveVars[I] = ActiveVars.back();
        } else {
          // This was the last active variable. Repeat the process from the
          // beginning.
          I = 0;
        }
        ActiveVars.pop_back();

        updateWatchedLiterals();
      } else if (I + 1 == ActiveVars.size()) {
        // There are no remaining unit clauses in the formula! Make a decision
        // for one of the active variables at the current level.
        ++Level;

        LevelVars[Level] = ActiveVar;
        LevelStates[Level] = State::Decision;
        VarAssignments[ActiveVar] = decideAssignment(ActiveVar);

        // Remove the variable that was just assigned from the set of active
        // variables.
        ActiveVars.pop_back();

        updateWatchedLiterals();

        // This was the last active variable. Repeat the process from the
        // beginning.
        I = 0;
      } else {
        ++I;
      }
    }
    return std::make_pair(Solver::Result::Satisfiable(buildSolution()),
                          MaxIterations);
  }

private:
  /// Returns a satisfying truth assignment to the atoms in the boolean formula.
  llvm::DenseMap<Atom, Solver::Result::Assignment> buildSolution() {
    llvm::DenseMap<Atom, Solver::Result::Assignment> Solution;
    for (auto &Atomic : Atomics) {
      // A variable may have a definite true/false assignment, or it may be
      // unassigned indicating its truth value does not affect the result of
      // the formula. Unassigned variables are assigned to true as a default.
      Solution[Atomic.second] =
          VarAssignments[Atomic.first] == Assignment::AssignedFalse
              ? Solver::Result::Assignment::AssignedFalse
              : Solver::Result::Assignment::AssignedTrue;
    }
    return Solution;
  }

  /// Reverses forced moves until the most recent level where a decision was
  /// made on the assignment of a variable.
  void reverseForcedMoves() {
    for (; LevelStates[Level] == State::Forced; --Level) {
      const Variable Var = LevelVars[Level];

      VarAssignments[Var] = Assignment::Unassigned;

      // If the variable that we pass through is watched then we add it to the
      // active variables.
      if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
        ActiveVars.push_back(Var);
    }
  }

  /// Updates watched literals that are affected by a variable assignment.
  void updateWatchedLiterals() {
    const Variable Var = LevelVars[Level];

    // Update the watched literals of clauses that currently watch the literal
    // that falsifies `Var`.
    const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue
                                 ? negLit(Var)
                                 : posLit(Var);
    ClauseID FalseLitWatcher = WatchedHead[FalseLit];
    WatchedHead[FalseLit] = NullClause;
    while (FalseLitWatcher != NullClause) {
      const ClauseID NextFalseLitWatcher = NextWatched[FalseLitWatcher];

      // Pick the first non-false literal as the new watched literal.
      const CNFFormula::Iterator FalseLitWatcherStart =
          CNF.startOfClause(FalseLitWatcher);
      CNFFormula::Iterator NewWatchedLitIter = FalseLitWatcherStart.next();
      while (isCurrentlyFalse(*NewWatchedLitIter))
        ++NewWatchedLitIter;
      const Literal NewWatchedLit = *NewWatchedLitIter;
      const Variable NewWatchedLitVar = var(NewWatchedLit);

      // Swap the old watched literal for the new one in `FalseLitWatcher` to
      // maintain the invariant that the watched literal is at the beginning of
      // the clause.
      *NewWatchedLitIter = FalseLit;
      *FalseLitWatcherStart = NewWatchedLit;

      // If the new watched literal isn't watched by any other clause and its
      // variable isn't assigned we need to add it to the active variables.
      if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) &&
          VarAssignments[NewWatchedLitVar] == Assignment::Unassigned)
        ActiveVars.push_back(NewWatchedLitVar);

      NextWatched[FalseLitWatcher] = WatchedHead[NewWatchedLit];
      WatchedHead[NewWatchedLit] = FalseLitWatcher;

      // Go to the next clause that watches `FalseLit`.
      FalseLitWatcher = NextFalseLitWatcher;
    }
  }

  /// Returns true if and only if one of the clauses that watch `Lit` is a unit
  /// clause.
  bool watchedByUnitClause(Literal Lit) const {
    for (ClauseID LitWatcher = WatchedHead[Lit]; LitWatcher != NullClause;
         LitWatcher = NextWatched[LitWatcher]) {
      llvm::ArrayRef<Literal> Clause = CNF.clauseLiterals(LitWatcher);

      // Assert the invariant that the watched literal is always the first one
      // in the clause.
      // FIXME: Consider replacing this with a test case that fails if the
      // invariant is broken by `updateWatchedLiterals`. That might not be easy
      // due to the transformations performed by `buildCNF`.
      assert(Clause.front() == Lit);

      if (isUnit(Clause))
        return true;
    }
    return false;
  }

  /// Returns true if and only if `Clause` is a unit clause.
  bool isUnit(llvm::ArrayRef<Literal> Clause) const {
    return llvm::all_of(Clause.drop_front(),
                        [this](Literal L) { return isCurrentlyFalse(L); });
  }

  /// Returns true if and only if `Lit` evaluates to `false` in the current
  /// partial assignment.
  bool isCurrentlyFalse(Literal Lit) const {
    return static_cast<int8_t>(VarAssignments[var(Lit)]) ==
           static_cast<int8_t>(Lit & 1);
  }

  /// Returns true if and only if `Lit` is watched by a clause in `Formula`.
  bool isWatched(Literal Lit) const { return WatchedHead[Lit] != NullClause; }

  /// Returns an assignment for an unassigned variable.
  Assignment decideAssignment(Variable Var) const {
    return !isWatched(posLit(Var)) || isWatched(negLit(Var))
               ? Assignment::AssignedFalse
               : Assignment::AssignedTrue;
  }

  /// Returns a set of all watched literals.
  llvm::DenseSet<Literal> watchedLiterals() const {
    llvm::DenseSet<Literal> WatchedLiterals;
    for (Literal Lit = 2; Lit < WatchedHead.size(); Lit++) {
      if (WatchedHead[Lit] == NullClause)
        continue;
      WatchedLiterals.insert(Lit);
    }
    return WatchedLiterals;
  }

  /// Returns true if and only if all active variables are unassigned.
  bool activeVarsAreUnassigned() const {
    return llvm::all_of(ActiveVars, [this](Variable Var) {
      return VarAssignments[Var] == Assignment::Unassigned;
    });
  }

  /// Returns true if and only if all active variables form watched literals.
  bool activeVarsFormWatchedLiterals() const {
    const llvm::DenseSet<Literal> WatchedLiterals = watchedLiterals();
    return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) {
      return WatchedLiterals.contains(posLit(Var)) ||
             WatchedLiterals.contains(negLit(Var));
    });
  }

  /// Returns true if and only if all unassigned variables that are forming
  /// watched literals are active.
  bool unassignedVarsFormingWatchedLiteralsAreActive() const {
    const llvm::DenseSet<Variable> ActiveVarsSet(ActiveVars.begin(),
                                                 ActiveVars.end());
    for (Literal Lit : watchedLiterals()) {
      const Variable Var = var(Lit);
      if (VarAssignments[Var] != Assignment::Unassigned)
        continue;
      if (ActiveVarsSet.contains(Var))
        continue;
      return false;
    }
    return true;
  }
};

} // namespace

Solver::Result
WatchedLiteralsSolver::solve(llvm::ArrayRef<const Formula *> Vals) {
  if (Vals.empty())
    return Solver::Result::Satisfiable({{}});
  auto [Res, Iterations] = WatchedLiteralsSolverImpl(Vals).solve(MaxIterations);
  MaxIterations = Iterations;
  return Res;
}

} // namespace dataflow
} // namespace clang