1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
//===- CNFFormula.cpp -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A representation of a boolean formula in 3-CNF.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/CNFFormula.h"
#include "llvm/ADT/DenseSet.h"
#include <queue>
namespace clang {
namespace dataflow {
namespace {
/// Applies simplifications while building up a BooleanFormula.
/// We keep track of unit clauses, which tell us variables that must be
/// true/false in any model that satisfies the overall formula.
/// Such variables can be dropped from subsequently-added clauses, which
/// may in turn yield more unit clauses or even a contradiction.
/// The total added complexity of this preprocessing is O(N) where we
/// for every clause, we do a lookup for each unit clauses.
/// The lookup is O(1) on average. This method won't catch all
/// contradictory formulas, more passes can in principle catch
/// more cases but we leave all these and the general case to the
/// proper SAT solver.
struct CNFFormulaBuilder {
// Formula should outlive CNFFormulaBuilder.
explicit CNFFormulaBuilder(CNFFormula &CNF) : Formula(CNF) {}
/// Adds the `L1 v ... v Ln` clause to the formula. Applies
/// simplifications, based on single-literal clauses.
///
/// Requirements:
///
/// `Li` must not be `NullLit`.
///
/// All literals must be distinct.
void addClause(ArrayRef<Literal> Literals) {
// We generate clauses with up to 3 literals in this file.
assert(!Literals.empty() && Literals.size() <= 3);
// Contains literals of the simplified clause.
llvm::SmallVector<Literal> Simplified;
for (auto L : Literals) {
assert(L != NullLit && !llvm::is_contained(Simplified, L));
auto X = var(L);
if (trueVars.contains(X)) { // X must be true
if (isPosLit(L))
return; // Omit clause `(... v X v ...)`, it is `true`.
else
continue; // Omit `!X` from `(... v !X v ...)`.
}
if (falseVars.contains(X)) { // X must be false
if (isNegLit(L))
return; // Omit clause `(... v !X v ...)`, it is `true`.
else
continue; // Omit `X` from `(... v X v ...)`.
}
Simplified.push_back(L);
}
if (Simplified.empty()) {
// Simplification made the clause empty, which is equivalent to `false`.
// We already know that this formula is unsatisfiable.
Formula.addClause(Simplified);
return;
}
if (Simplified.size() == 1) {
// We have new unit clause.
const Literal lit = Simplified.front();
const Variable v = var(lit);
if (isPosLit(lit))
trueVars.insert(v);
else
falseVars.insert(v);
}
Formula.addClause(Simplified);
}
/// Returns true if we observed a contradiction while adding clauses.
/// In this case then the formula is already known to be unsatisfiable.
bool isKnownContradictory() { return Formula.knownContradictory(); }
private:
CNFFormula &Formula;
llvm::DenseSet<Variable> trueVars;
llvm::DenseSet<Variable> falseVars;
};
} // namespace
CNFFormula::CNFFormula(Variable LargestVar)
: LargestVar(LargestVar), KnownContradictory(false) {
Clauses.push_back(0);
ClauseStarts.push_back(0);
}
void CNFFormula::addClause(ArrayRef<Literal> lits) {
assert(!llvm::is_contained(lits, NullLit));
if (lits.empty())
KnownContradictory = true;
const size_t S = Clauses.size();
ClauseStarts.push_back(S);
llvm::append_range(Clauses, lits);
}
CNFFormula buildCNF(const llvm::ArrayRef<const Formula *> &Formulas,
llvm::DenseMap<Variable, Atom> &Atomics) {
// The general strategy of the algorithm implemented below is to map each
// of the sub-values in `Vals` to a unique variable and use these variables in
// the resulting CNF expression to avoid exponential blow up. The number of
// literals in the resulting formula is guaranteed to be linear in the number
// of sub-formulas in `Vals`.
// Map each sub-formula in `Vals` to a unique variable.
llvm::DenseMap<const Formula *, Variable> FormulaToVar;
// Store variable identifiers and Atom of atomic booleans.
Variable NextVar = 1;
{
std::queue<const Formula *> UnprocessedFormulas;
for (const Formula *F : Formulas)
UnprocessedFormulas.push(F);
while (!UnprocessedFormulas.empty()) {
Variable Var = NextVar;
const Formula *F = UnprocessedFormulas.front();
UnprocessedFormulas.pop();
if (!FormulaToVar.try_emplace(F, Var).second)
continue;
++NextVar;
for (const Formula *Op : F->operands())
UnprocessedFormulas.push(Op);
if (F->kind() == Formula::AtomRef)
Atomics[Var] = F->getAtom();
}
}
auto GetVar = [&FormulaToVar](const Formula *F) {
auto ValIt = FormulaToVar.find(F);
assert(ValIt != FormulaToVar.end());
return ValIt->second;
};
CNFFormula CNF(NextVar - 1);
std::vector<bool> ProcessedSubVals(NextVar, false);
CNFFormulaBuilder builder(CNF);
// Add a conjunct for each variable that represents a top-level conjunction
// value in `Vals`.
for (const Formula *F : Formulas)
builder.addClause(posLit(GetVar(F)));
// Add conjuncts that represent the mapping between newly-created variables
// and their corresponding sub-formulas.
std::queue<const Formula *> UnprocessedFormulas;
for (const Formula *F : Formulas)
UnprocessedFormulas.push(F);
while (!UnprocessedFormulas.empty()) {
const Formula *F = UnprocessedFormulas.front();
UnprocessedFormulas.pop();
const Variable Var = GetVar(F);
if (ProcessedSubVals[Var])
continue;
ProcessedSubVals[Var] = true;
switch (F->kind()) {
case Formula::AtomRef:
break;
case Formula::Literal:
CNF.addClause(F->literal() ? posLit(Var) : negLit(Var));
break;
case Formula::And: {
const Variable LHS = GetVar(F->operands()[0]);
const Variable RHS = GetVar(F->operands()[1]);
if (LHS == RHS) {
// `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), posLit(LHS)});
builder.addClause({posLit(Var), negLit(LHS)});
} else {
// `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v
// !B)` which is already in conjunctive normal form. Below we add each
// of the conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), posLit(LHS)});
builder.addClause({negLit(Var), posLit(RHS)});
builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
}
break;
}
case Formula::Or: {
const Variable LHS = GetVar(F->operands()[0]);
const Variable RHS = GetVar(F->operands()[1]);
if (LHS == RHS) {
// `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), posLit(LHS)});
builder.addClause({posLit(Var), negLit(LHS)});
} else {
// `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v
// !B)` which is already in conjunctive normal form. Below we add each
// of the conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), posLit(LHS), posLit(RHS)});
builder.addClause({posLit(Var), negLit(LHS)});
builder.addClause({posLit(Var), negLit(RHS)});
}
break;
}
case Formula::Not: {
const Variable Operand = GetVar(F->operands()[0]);
// `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), negLit(Operand)});
builder.addClause({posLit(Var), posLit(Operand)});
break;
}
case Formula::Implies: {
const Variable LHS = GetVar(F->operands()[0]);
const Variable RHS = GetVar(F->operands()[1]);
// `X <=> (A => B)` is equivalent to
// `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in
// conjunctive normal form. Below we add each of the conjuncts of
// the latter expression to the result.
builder.addClause({posLit(Var), posLit(LHS)});
builder.addClause({posLit(Var), negLit(RHS)});
builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
break;
}
case Formula::Equal: {
const Variable LHS = GetVar(F->operands()[0]);
const Variable RHS = GetVar(F->operands()[1]);
if (LHS == RHS) {
// `X <=> (A <=> A)` is equivalent to `X` which is already in
// conjunctive normal form. Below we add each of the conjuncts of the
// latter expression to the result.
builder.addClause(posLit(Var));
// No need to visit the sub-values of `Val`.
continue;
}
// `X <=> (A <=> B)` is equivalent to
// `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which
// is already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
builder.addClause({posLit(Var), posLit(LHS), posLit(RHS)});
builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
builder.addClause({negLit(Var), posLit(LHS), negLit(RHS)});
builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
break;
}
}
if (builder.isKnownContradictory()) {
return CNF;
}
for (const Formula *Child : F->operands())
UnprocessedFormulas.push(Child);
}
// Unit clauses that were added later were not
// considered for the simplification of earlier clauses. Do a final
// pass to find more opportunities for simplification.
CNFFormula FinalCNF(NextVar - 1);
CNFFormulaBuilder FinalBuilder(FinalCNF);
// Collect unit clauses.
for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
if (CNF.clauseSize(C) == 1) {
FinalBuilder.addClause(CNF.clauseLiterals(C)[0]);
}
}
// Add all clauses that were added previously, preserving the order.
for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
FinalBuilder.addClause(CNF.clauseLiterals(C));
if (FinalBuilder.isKnownContradictory()) {
break;
}
}
// It is possible there were new unit clauses again, but
// we stop here and leave the rest to the solver algorithm.
return FinalCNF;
}
} // namespace dataflow
} // namespace clang
|