1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
//===--- Program.cpp - Bytecode for the constexpr VM ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Program.h"
#include "Context.h"
#include "Function.h"
#include "Integral.h"
#include "PrimType.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
using namespace clang;
using namespace clang::interp;
unsigned Program::getOrCreateNativePointer(const void *Ptr) {
auto [It, Inserted] =
NativePointerIndices.try_emplace(Ptr, NativePointers.size());
if (Inserted)
NativePointers.push_back(Ptr);
return It->second;
}
const void *Program::getNativePointer(unsigned Idx) {
return NativePointers[Idx];
}
unsigned Program::createGlobalString(const StringLiteral *S, const Expr *Base) {
const size_t CharWidth = S->getCharByteWidth();
const size_t BitWidth = CharWidth * Ctx.getCharBit();
unsigned StringLength = S->getLength();
PrimType CharType;
switch (CharWidth) {
case 1:
CharType = PT_Sint8;
break;
case 2:
CharType = PT_Uint16;
break;
case 4:
CharType = PT_Uint32;
break;
default:
llvm_unreachable("unsupported character width");
}
if (!Base)
Base = S;
// Create a descriptor for the string.
Descriptor *Desc =
allocateDescriptor(Base, CharType, Descriptor::GlobalMD, StringLength + 1,
/*isConst=*/true,
/*isTemporary=*/false,
/*isMutable=*/false);
// Allocate storage for the string.
// The byte length does not include the null terminator.
unsigned GlobalIndex = Globals.size();
unsigned Sz = Desc->getAllocSize();
auto *G = new (Allocator, Sz) Global(Ctx.getEvalID(), Desc, /*isStatic=*/true,
/*isExtern=*/false);
G->block()->invokeCtor();
new (G->block()->rawData())
GlobalInlineDescriptor{GlobalInitState::Initialized};
Globals.push_back(G);
const Pointer Ptr(G->block());
if (CharWidth == 1) {
std::memcpy(&Ptr.atIndex(0).deref<char>(), S->getString().data(),
StringLength);
} else {
// Construct the string in storage.
for (unsigned I = 0; I <= StringLength; ++I) {
Pointer Field = Ptr.atIndex(I);
const uint32_t CodePoint = I == StringLength ? 0 : S->getCodeUnit(I);
switch (CharType) {
case PT_Sint8: {
using T = PrimConv<PT_Sint8>::T;
Field.deref<T>() = T::from(CodePoint, BitWidth);
break;
}
case PT_Uint16: {
using T = PrimConv<PT_Uint16>::T;
Field.deref<T>() = T::from(CodePoint, BitWidth);
break;
}
case PT_Uint32: {
using T = PrimConv<PT_Uint32>::T;
Field.deref<T>() = T::from(CodePoint, BitWidth);
break;
}
default:
llvm_unreachable("unsupported character type");
}
}
}
Ptr.initialize();
return GlobalIndex;
}
Pointer Program::getPtrGlobal(unsigned Idx) const {
assert(Idx < Globals.size());
return Pointer(Globals[Idx]->block());
}
std::optional<unsigned> Program::getGlobal(const ValueDecl *VD) {
if (auto It = GlobalIndices.find(VD); It != GlobalIndices.end())
return It->second;
// Find any previous declarations which were already evaluated.
std::optional<unsigned> Index;
for (const Decl *P = VD->getPreviousDecl(); P; P = P->getPreviousDecl()) {
if (auto It = GlobalIndices.find(P); It != GlobalIndices.end()) {
Index = It->second;
break;
}
}
// Map the decl to the existing index.
if (Index)
GlobalIndices[VD] = *Index;
return std::nullopt;
}
std::optional<unsigned> Program::getGlobal(const Expr *E) {
if (auto It = GlobalIndices.find(E); It != GlobalIndices.end())
return It->second;
return std::nullopt;
}
std::optional<unsigned> Program::getOrCreateGlobal(const ValueDecl *VD,
const Expr *Init) {
if (auto Idx = getGlobal(VD))
return Idx;
if (auto Idx = createGlobal(VD, Init)) {
GlobalIndices[VD] = *Idx;
return Idx;
}
return std::nullopt;
}
unsigned Program::getOrCreateDummy(const DeclTy &D) {
assert(D);
// Dedup blocks since they are immutable and pointers cannot be compared.
if (auto It = DummyVariables.find(D.getOpaqueValue());
It != DummyVariables.end())
return It->second;
QualType QT;
bool IsWeak = false;
if (const auto *E = dyn_cast<const Expr *>(D)) {
QT = E->getType();
} else {
const auto *VD = cast<ValueDecl>(cast<const Decl *>(D));
IsWeak = VD->isWeak();
QT = VD->getType();
if (const auto *RT = QT->getAs<ReferenceType>())
QT = RT->getPointeeType();
}
assert(!QT.isNull());
Descriptor *Desc;
if (std::optional<PrimType> T = Ctx.classify(QT))
Desc = createDescriptor(D, *T, /*SourceTy=*/nullptr, std::nullopt,
/*IsConst=*/QT.isConstQualified());
else
Desc = createDescriptor(D, QT.getTypePtr(), std::nullopt,
/*IsConst=*/QT.isConstQualified());
if (!Desc)
Desc = allocateDescriptor(D);
assert(Desc);
Desc->makeDummy();
assert(Desc->isDummy());
// Allocate a block for storage.
unsigned I = Globals.size();
auto *G = new (Allocator, Desc->getAllocSize())
Global(Ctx.getEvalID(), getCurrentDecl(), Desc, /*IsStatic=*/true,
/*IsExtern=*/false, IsWeak);
G->block()->invokeCtor();
Globals.push_back(G);
DummyVariables[D.getOpaqueValue()] = I;
return I;
}
std::optional<unsigned> Program::createGlobal(const ValueDecl *VD,
const Expr *Init) {
bool IsStatic, IsExtern;
bool IsWeak = VD->isWeak();
if (const auto *Var = dyn_cast<VarDecl>(VD)) {
IsStatic = Context::shouldBeGloballyIndexed(VD);
IsExtern = Var->hasExternalStorage();
} else if (isa<UnnamedGlobalConstantDecl, MSGuidDecl,
TemplateParamObjectDecl>(VD)) {
IsStatic = true;
IsExtern = false;
} else {
IsStatic = false;
IsExtern = true;
}
// Register all previous declarations as well. For extern blocks, just replace
// the index with the new variable.
if (auto Idx =
createGlobal(VD, VD->getType(), IsStatic, IsExtern, IsWeak, Init)) {
for (const Decl *P = VD; P; P = P->getPreviousDecl()) {
unsigned &PIdx = GlobalIndices[P];
if (P != VD) {
if (Globals[PIdx]->block()->isExtern())
Globals[PIdx] = Globals[*Idx];
}
PIdx = *Idx;
}
return *Idx;
}
return std::nullopt;
}
std::optional<unsigned> Program::createGlobal(const Expr *E) {
if (auto Idx = getGlobal(E))
return Idx;
if (auto Idx = createGlobal(E, E->getType(), /*isStatic=*/true,
/*isExtern=*/false, /*IsWeak=*/false)) {
GlobalIndices[E] = *Idx;
return *Idx;
}
return std::nullopt;
}
std::optional<unsigned> Program::createGlobal(const DeclTy &D, QualType Ty,
bool IsStatic, bool IsExtern,
bool IsWeak, const Expr *Init) {
// Create a descriptor for the global.
Descriptor *Desc;
const bool IsConst = Ty.isConstQualified();
const bool IsTemporary = D.dyn_cast<const Expr *>();
const bool IsVolatile = Ty.isVolatileQualified();
if (std::optional<PrimType> T = Ctx.classify(Ty))
Desc = createDescriptor(D, *T, nullptr, Descriptor::GlobalMD, IsConst,
IsTemporary, /*IsMutable=*/false, IsVolatile);
else
Desc = createDescriptor(D, Ty.getTypePtr(), Descriptor::GlobalMD, IsConst,
IsTemporary, /*IsMutable=*/false, IsVolatile);
if (!Desc)
return std::nullopt;
// Allocate a block for storage.
unsigned I = Globals.size();
auto *G = new (Allocator, Desc->getAllocSize()) Global(
Ctx.getEvalID(), getCurrentDecl(), Desc, IsStatic, IsExtern, IsWeak);
G->block()->invokeCtor();
// Initialize InlineDescriptor fields.
auto *GD = new (G->block()->rawData()) GlobalInlineDescriptor();
if (!Init)
GD->InitState = GlobalInitState::NoInitializer;
Globals.push_back(G);
return I;
}
Function *Program::getFunction(const FunctionDecl *F) {
F = F->getCanonicalDecl();
assert(F);
auto It = Funcs.find(F);
return It == Funcs.end() ? nullptr : It->second.get();
}
Record *Program::getOrCreateRecord(const RecordDecl *RD) {
// Use the actual definition as a key.
RD = RD->getDefinition();
if (!RD)
return nullptr;
if (!RD->isCompleteDefinition())
return nullptr;
// Return an existing record if available. Otherwise, we insert nullptr now
// and replace that later, so recursive calls to this function with the same
// RecordDecl don't run into infinite recursion.
auto [It, Inserted] = Records.try_emplace(RD);
if (!Inserted)
return It->second;
// Number of bytes required by fields and base classes.
unsigned BaseSize = 0;
// Number of bytes required by virtual base.
unsigned VirtSize = 0;
// Helper to get a base descriptor.
auto GetBaseDesc = [this](const RecordDecl *BD,
const Record *BR) -> const Descriptor * {
if (!BR)
return nullptr;
return allocateDescriptor(BD, BR, std::nullopt, /*isConst=*/false,
/*isTemporary=*/false,
/*isMutable=*/false, /*IsVolatile=*/false);
};
// Reserve space for base classes.
Record::BaseList Bases;
Record::VirtualBaseList VirtBases;
if (const auto *CD = dyn_cast<CXXRecordDecl>(RD)) {
for (const CXXBaseSpecifier &Spec : CD->bases()) {
if (Spec.isVirtual())
continue;
// In error cases, the base might not be a RecordType.
const auto *RT = Spec.getType()->getAs<RecordType>();
if (!RT)
return nullptr;
const RecordDecl *BD = RT->getDecl();
const Record *BR = getOrCreateRecord(BD);
const Descriptor *Desc = GetBaseDesc(BD, BR);
if (!Desc)
return nullptr;
BaseSize += align(sizeof(InlineDescriptor));
Bases.push_back({BD, BaseSize, Desc, BR});
BaseSize += align(BR->getSize());
}
for (const CXXBaseSpecifier &Spec : CD->vbases()) {
const auto *RT = Spec.getType()->getAs<RecordType>();
if (!RT)
return nullptr;
const RecordDecl *BD = RT->getDecl();
const Record *BR = getOrCreateRecord(BD);
const Descriptor *Desc = GetBaseDesc(BD, BR);
if (!Desc)
return nullptr;
VirtSize += align(sizeof(InlineDescriptor));
VirtBases.push_back({BD, VirtSize, Desc, BR});
VirtSize += align(BR->getSize());
}
}
// Reserve space for fields.
Record::FieldList Fields;
for (const FieldDecl *FD : RD->fields()) {
FD = FD->getFirstDecl();
// Note that we DO create fields and descriptors
// for unnamed bitfields here, even though we later ignore
// them everywhere. That's so the FieldDecl's getFieldIndex() matches.
// Reserve space for the field's descriptor and the offset.
BaseSize += align(sizeof(InlineDescriptor));
// Classify the field and add its metadata.
QualType FT = FD->getType();
const bool IsConst = FT.isConstQualified();
const bool IsMutable = FD->isMutable();
const bool IsVolatile = FT.isVolatileQualified();
const Descriptor *Desc;
if (std::optional<PrimType> T = Ctx.classify(FT)) {
Desc = createDescriptor(FD, *T, nullptr, std::nullopt, IsConst,
/*isTemporary=*/false, IsMutable, IsVolatile);
} else {
Desc = createDescriptor(FD, FT.getTypePtr(), std::nullopt, IsConst,
/*isTemporary=*/false, IsMutable, IsVolatile);
}
if (!Desc)
return nullptr;
Fields.push_back({FD, BaseSize, Desc});
BaseSize += align(Desc->getAllocSize());
}
Record *R = new (Allocator) Record(RD, std::move(Bases), std::move(Fields),
std::move(VirtBases), VirtSize, BaseSize);
Records[RD] = R;
return R;
}
Descriptor *Program::createDescriptor(const DeclTy &D, const Type *Ty,
Descriptor::MetadataSize MDSize,
bool IsConst, bool IsTemporary,
bool IsMutable, bool IsVolatile,
const Expr *Init) {
// Classes and structures.
if (const auto *RT = Ty->getAs<RecordType>()) {
if (const auto *Record = getOrCreateRecord(RT->getDecl()))
return allocateDescriptor(D, Record, MDSize, IsConst, IsTemporary,
IsMutable, IsVolatile);
return allocateDescriptor(D, MDSize);
}
// Arrays.
if (const auto *ArrayType = Ty->getAsArrayTypeUnsafe()) {
QualType ElemTy = ArrayType->getElementType();
// Array of well-known bounds.
if (const auto *CAT = dyn_cast<ConstantArrayType>(ArrayType)) {
size_t NumElems = CAT->getZExtSize();
if (std::optional<PrimType> T = Ctx.classify(ElemTy)) {
// Arrays of primitives.
unsigned ElemSize = primSize(*T);
if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) {
return {};
}
return allocateDescriptor(D, *T, MDSize, NumElems, IsConst, IsTemporary,
IsMutable);
} else {
// Arrays of composites. In this case, the array is a list of pointers,
// followed by the actual elements.
const Descriptor *ElemDesc = createDescriptor(
D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary);
if (!ElemDesc)
return nullptr;
unsigned ElemSize = ElemDesc->getAllocSize() + sizeof(InlineDescriptor);
if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems)
return {};
return allocateDescriptor(D, Ty, ElemDesc, MDSize, NumElems, IsConst,
IsTemporary, IsMutable);
}
}
// Array of unknown bounds - cannot be accessed and pointer arithmetic
// is forbidden on pointers to such objects.
if (isa<IncompleteArrayType>(ArrayType) ||
isa<VariableArrayType>(ArrayType)) {
if (std::optional<PrimType> T = Ctx.classify(ElemTy)) {
return allocateDescriptor(D, *T, MDSize, IsConst, IsTemporary,
Descriptor::UnknownSize{});
} else {
const Descriptor *Desc = createDescriptor(
D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary);
if (!Desc)
return nullptr;
return allocateDescriptor(D, Desc, MDSize, IsTemporary,
Descriptor::UnknownSize{});
}
}
}
// Atomic types.
if (const auto *AT = Ty->getAs<AtomicType>()) {
const Type *InnerTy = AT->getValueType().getTypePtr();
return createDescriptor(D, InnerTy, MDSize, IsConst, IsTemporary,
IsMutable);
}
// Complex types - represented as arrays of elements.
if (const auto *CT = Ty->getAs<ComplexType>()) {
std::optional<PrimType> ElemTy = Ctx.classify(CT->getElementType());
if (!ElemTy)
return nullptr;
return allocateDescriptor(D, *ElemTy, MDSize, 2, IsConst, IsTemporary,
IsMutable);
}
// Same with vector types.
if (const auto *VT = Ty->getAs<VectorType>()) {
std::optional<PrimType> ElemTy = Ctx.classify(VT->getElementType());
if (!ElemTy)
return nullptr;
return allocateDescriptor(D, *ElemTy, MDSize, VT->getNumElements(), IsConst,
IsTemporary, IsMutable);
}
return nullptr;
}
|