1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
//===----- EvaluationResult.cpp - Result class for the VM ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "EvaluationResult.h"
#include "InterpState.h"
#include "Record.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include <iterator>
namespace clang {
namespace interp {
APValue EvaluationResult::toAPValue() const {
assert(!empty());
switch (Kind) {
case LValue:
// Either a pointer or a function pointer.
if (const auto *P = std::get_if<Pointer>(&Value))
return P->toAPValue(Ctx->getASTContext());
else if (const auto *FP = std::get_if<FunctionPointer>(&Value))
return FP->toAPValue(Ctx->getASTContext());
else
llvm_unreachable("Unhandled LValue type");
break;
case RValue:
return std::get<APValue>(Value);
case Valid:
return APValue();
default:
llvm_unreachable("Unhandled result kind?");
}
}
std::optional<APValue> EvaluationResult::toRValue() const {
if (Kind == RValue)
return toAPValue();
assert(Kind == LValue);
// We have a pointer and want an RValue.
if (const auto *P = std::get_if<Pointer>(&Value))
return P->toRValue(*Ctx, getSourceType());
else if (const auto *FP = std::get_if<FunctionPointer>(&Value)) // Nope
return FP->toAPValue(Ctx->getASTContext());
llvm_unreachable("Unhandled lvalue kind");
}
static void DiagnoseUninitializedSubobject(InterpState &S, SourceLocation Loc,
const FieldDecl *SubObjDecl) {
assert(SubObjDecl && "Subobject declaration does not exist");
S.FFDiag(Loc, diag::note_constexpr_uninitialized)
<< /*(name)*/ 1 << SubObjDecl;
S.Note(SubObjDecl->getLocation(),
diag::note_constexpr_subobject_declared_here);
}
static bool CheckFieldsInitialized(InterpState &S, SourceLocation Loc,
const Pointer &BasePtr, const Record *R);
static bool CheckArrayInitialized(InterpState &S, SourceLocation Loc,
const Pointer &BasePtr,
const ConstantArrayType *CAT) {
bool Result = true;
size_t NumElems = CAT->getZExtSize();
QualType ElemType = CAT->getElementType();
if (ElemType->isRecordType()) {
const Record *R = BasePtr.getElemRecord();
for (size_t I = 0; I != NumElems; ++I) {
Pointer ElemPtr = BasePtr.atIndex(I).narrow();
Result &= CheckFieldsInitialized(S, Loc, ElemPtr, R);
}
} else if (const auto *ElemCAT = dyn_cast<ConstantArrayType>(ElemType)) {
for (size_t I = 0; I != NumElems; ++I) {
Pointer ElemPtr = BasePtr.atIndex(I).narrow();
Result &= CheckArrayInitialized(S, Loc, ElemPtr, ElemCAT);
}
} else {
for (size_t I = 0; I != NumElems; ++I) {
if (!BasePtr.atIndex(I).isInitialized()) {
DiagnoseUninitializedSubobject(S, Loc, BasePtr.getField());
Result = false;
}
}
}
return Result;
}
static bool CheckFieldsInitialized(InterpState &S, SourceLocation Loc,
const Pointer &BasePtr, const Record *R) {
assert(R);
bool Result = true;
// Check all fields of this record are initialized.
for (const Record::Field &F : R->fields()) {
Pointer FieldPtr = BasePtr.atField(F.Offset);
QualType FieldType = F.Decl->getType();
// Don't check inactive union members.
if (R->isUnion() && !FieldPtr.isActive())
continue;
if (FieldType->isRecordType()) {
Result &= CheckFieldsInitialized(S, Loc, FieldPtr, FieldPtr.getRecord());
} else if (FieldType->isIncompleteArrayType()) {
// Nothing to do here.
} else if (F.Decl->isUnnamedBitField()) {
// Nothing do do here.
} else if (FieldType->isArrayType()) {
const auto *CAT =
cast<ConstantArrayType>(FieldType->getAsArrayTypeUnsafe());
Result &= CheckArrayInitialized(S, Loc, FieldPtr, CAT);
} else if (!FieldPtr.isInitialized()) {
DiagnoseUninitializedSubobject(S, Loc, F.Decl);
Result = false;
}
}
// Check Fields in all bases
for (auto [I, B] : llvm::enumerate(R->bases())) {
Pointer P = BasePtr.atField(B.Offset);
if (!P.isInitialized()) {
const Descriptor *Desc = BasePtr.getDeclDesc();
if (const auto *CD = dyn_cast_if_present<CXXRecordDecl>(R->getDecl())) {
const auto &BS = *std::next(CD->bases_begin(), I);
SourceLocation TypeBeginLoc = BS.getBaseTypeLoc();
S.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base)
<< B.Desc->getType() << SourceRange(TypeBeginLoc, BS.getEndLoc());
} else {
S.FFDiag(Desc->getLocation(), diag::note_constexpr_uninitialized_base)
<< B.Desc->getType();
}
return false;
}
Result &= CheckFieldsInitialized(S, Loc, P, B.R);
}
// TODO: Virtual bases
return Result;
}
bool EvaluationResult::checkFullyInitialized(InterpState &S,
const Pointer &Ptr) const {
assert(Source);
assert(empty());
if (Ptr.isZero())
return true;
// We can't inspect dead pointers at all. Return true here so we can
// diagnose them later.
if (!Ptr.isLive())
return true;
SourceLocation InitLoc;
if (const auto *D = dyn_cast<const Decl *>(Source))
InitLoc = cast<VarDecl>(D)->getAnyInitializer()->getExprLoc();
else if (const auto *E = dyn_cast<const Expr *>(Source))
InitLoc = E->getExprLoc();
if (const Record *R = Ptr.getRecord())
return CheckFieldsInitialized(S, InitLoc, Ptr, R);
if (const auto *CAT = dyn_cast_if_present<ConstantArrayType>(
Ptr.getType()->getAsArrayTypeUnsafe()))
return CheckArrayInitialized(S, InitLoc, Ptr, CAT);
return true;
}
static void collectBlocks(const Pointer &Ptr,
llvm::SetVector<const Block *> &Blocks) {
auto isUsefulPtr = [](const Pointer &P) -> bool {
return P.isLive() && !P.isZero() && !P.isDummy() && P.isDereferencable() &&
!P.isUnknownSizeArray() && !P.isOnePastEnd();
};
if (!isUsefulPtr(Ptr))
return;
Blocks.insert(Ptr.block());
const Descriptor *Desc = Ptr.getFieldDesc();
if (!Desc)
return;
if (const Record *R = Desc->ElemRecord) {
for (const Record::Field &F : R->fields()) {
const Pointer &FieldPtr = Ptr.atField(F.Offset);
assert(FieldPtr.block() == Ptr.block());
collectBlocks(FieldPtr, Blocks);
}
} else if (Desc->isPrimitive() && Desc->getPrimType() == PT_Ptr) {
const Pointer &Pointee = Ptr.deref<Pointer>();
if (isUsefulPtr(Pointee) && !Blocks.contains(Pointee.block()))
collectBlocks(Pointee, Blocks);
} else if (Desc->isPrimitiveArray() && Desc->getPrimType() == PT_Ptr) {
for (unsigned I = 0; I != Desc->getNumElems(); ++I) {
const Pointer &ElemPointee = Ptr.elem<Pointer>(I);
if (isUsefulPtr(ElemPointee) && !Blocks.contains(ElemPointee.block()))
collectBlocks(ElemPointee, Blocks);
}
} else if (Desc->isCompositeArray()) {
for (unsigned I = 0; I != Desc->getNumElems(); ++I) {
const Pointer &ElemPtr = Ptr.atIndex(I).narrow();
collectBlocks(ElemPtr, Blocks);
}
}
}
bool EvaluationResult::checkReturnValue(InterpState &S, const Context &Ctx,
const Pointer &Ptr,
const SourceInfo &Info) {
// Collect all blocks that this pointer (transitively) points to and
// return false if any of them is a dynamic block.
llvm::SetVector<const Block *> Blocks;
collectBlocks(Ptr, Blocks);
for (const Block *B : Blocks) {
if (B->isDynamic()) {
assert(B->getDescriptor());
assert(B->getDescriptor()->asExpr());
bool IsSubobj = !Ptr.isRoot() || Ptr.isArrayElement();
S.FFDiag(Info, diag::note_constexpr_dynamic_alloc)
<< Ptr.getType()->isReferenceType() << IsSubobj;
S.Note(B->getDescriptor()->asExpr()->getExprLoc(),
diag::note_constexpr_dynamic_alloc_here);
return false;
}
}
return true;
}
} // namespace interp
} // namespace clang
|