aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/AST/ByteCode/ByteCodeEmitter.cpp
blob: 3288585683c100dfdfbea55829d8926c29a52bcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//===--- ByteCodeEmitter.cpp - Instruction emitter for the VM ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ByteCodeEmitter.h"
#include "Context.h"
#include "Floating.h"
#include "IntegralAP.h"
#include "Opcode.h"
#include "Program.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include <type_traits>

using namespace clang;
using namespace clang::interp;

void ByteCodeEmitter::compileFunc(const FunctionDecl *FuncDecl,
                                  Function *Func) {
  assert(FuncDecl);
  assert(Func);

  // Manually created functions that haven't been assigned proper
  // parameters yet.
  if (!FuncDecl->param_empty() && !FuncDecl->param_begin())
    return;

  if (!FuncDecl->isDefined())
    return;

  // Set up lambda captures.
  if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl);
      MD && isLambdaCallOperator(MD)) {
    // Set up lambda capture to closure record field mapping.
    const Record *R = P.getOrCreateRecord(MD->getParent());
    assert(R);
    llvm::DenseMap<const ValueDecl *, FieldDecl *> LC;
    FieldDecl *LTC;

    MD->getParent()->getCaptureFields(LC, LTC);

    for (auto Cap : LC) {
      unsigned Offset = R->getField(Cap.second)->Offset;
      this->LambdaCaptures[Cap.first] = {
          Offset, Cap.second->getType()->isReferenceType()};
    }
    if (LTC) {
      QualType CaptureType = R->getField(LTC)->Decl->getType();
      this->LambdaThisCapture = {R->getField(LTC)->Offset,
                                 CaptureType->isPointerOrReferenceType()};
    }
  }

  // Register parameters with their offset.
  unsigned ParamIndex = 0;
  unsigned Drop = Func->hasRVO() +
                  (Func->hasThisPointer() && !Func->isThisPointerExplicit());
  for (auto ParamOffset : llvm::drop_begin(Func->ParamOffsets, Drop)) {
    const ParmVarDecl *PD = FuncDecl->parameters()[ParamIndex];
    OptPrimType T = Ctx.classify(PD->getType());
    this->Params.insert({PD, {ParamOffset, T != std::nullopt}});
    ++ParamIndex;
  }

  Func->setDefined(true);

  // Lambda static invokers are a special case that we emit custom code for.
  bool IsEligibleForCompilation = Func->isLambdaStaticInvoker() ||
                                  FuncDecl->isConstexpr() ||
                                  FuncDecl->hasAttr<MSConstexprAttr>();

  // Compile the function body.
  if (!IsEligibleForCompilation || !visitFunc(FuncDecl)) {
    Func->setIsFullyCompiled(true);
    return;
  }

  // Create scopes from descriptors.
  llvm::SmallVector<Scope, 2> Scopes;
  for (auto &DS : Descriptors) {
    Scopes.emplace_back(std::move(DS));
  }

  // Set the function's code.
  Func->setCode(NextLocalOffset, std::move(Code), std::move(SrcMap),
                std::move(Scopes), FuncDecl->hasBody());
  Func->setIsFullyCompiled(true);
}

Scope::Local ByteCodeEmitter::createLocal(Descriptor *D) {
  NextLocalOffset += sizeof(Block);
  unsigned Location = NextLocalOffset;
  NextLocalOffset += align(D->getAllocSize());
  return {Location, D};
}

void ByteCodeEmitter::emitLabel(LabelTy Label) {
  const size_t Target = Code.size();
  LabelOffsets.insert({Label, Target});

  if (auto It = LabelRelocs.find(Label); It != LabelRelocs.end()) {
    for (unsigned Reloc : It->second) {
      using namespace llvm::support;

      // Rewrite the operand of all jumps to this label.
      void *Location = Code.data() + Reloc - align(sizeof(int32_t));
      assert(aligned(Location));
      const int32_t Offset = Target - static_cast<int64_t>(Reloc);
      endian::write<int32_t, llvm::endianness::native>(Location, Offset);
    }
    LabelRelocs.erase(It);
  }
}

int32_t ByteCodeEmitter::getOffset(LabelTy Label) {
  // Compute the PC offset which the jump is relative to.
  const int64_t Position =
      Code.size() + align(sizeof(Opcode)) + align(sizeof(int32_t));
  assert(aligned(Position));

  // If target is known, compute jump offset.
  if (auto It = LabelOffsets.find(Label); It != LabelOffsets.end())
    return It->second - Position;

  // Otherwise, record relocation and return dummy offset.
  LabelRelocs[Label].push_back(Position);
  return 0ull;
}

/// Helper to write bytecode and bail out if 32-bit offsets become invalid.
/// Pointers will be automatically marshalled as 32-bit IDs.
template <typename T>
static void emit(Program &P, std::vector<std::byte> &Code, const T &Val,
                 bool &Success) {
  size_t Size;

  if constexpr (std::is_pointer_v<T>)
    Size = sizeof(uint32_t);
  else
    Size = sizeof(T);

  if (Code.size() + Size > std::numeric_limits<unsigned>::max()) {
    Success = false;
    return;
  }

  // Access must be aligned!
  size_t ValPos = align(Code.size());
  Size = align(Size);
  assert(aligned(ValPos + Size));
  Code.resize(ValPos + Size);

  if constexpr (!std::is_pointer_v<T>) {
    new (Code.data() + ValPos) T(Val);
  } else {
    uint32_t ID = P.getOrCreateNativePointer(Val);
    new (Code.data() + ValPos) uint32_t(ID);
  }
}

/// Emits a serializable value. These usually (potentially) contain
/// heap-allocated memory and aren't trivially copyable.
template <typename T>
static void emitSerialized(std::vector<std::byte> &Code, const T &Val,
                           bool &Success) {
  size_t Size = Val.bytesToSerialize();

  if (Code.size() + Size > std::numeric_limits<unsigned>::max()) {
    Success = false;
    return;
  }

  // Access must be aligned!
  assert(aligned(Code.size()));
  size_t ValPos = Code.size();
  Size = align(Size);
  assert(aligned(ValPos + Size));
  Code.resize(ValPos + Size);

  Val.serialize(Code.data() + ValPos);
}

template <>
void emit(Program &P, std::vector<std::byte> &Code, const Floating &Val,
          bool &Success) {
  emitSerialized(Code, Val, Success);
}

template <>
void emit(Program &P, std::vector<std::byte> &Code,
          const IntegralAP<false> &Val, bool &Success) {
  emitSerialized(Code, Val, Success);
}

template <>
void emit(Program &P, std::vector<std::byte> &Code, const IntegralAP<true> &Val,
          bool &Success) {
  emitSerialized(Code, Val, Success);
}

template <>
void emit(Program &P, std::vector<std::byte> &Code, const FixedPoint &Val,
          bool &Success) {
  emitSerialized(Code, Val, Success);
}

template <typename... Tys>
bool ByteCodeEmitter::emitOp(Opcode Op, const Tys &...Args,
                             const SourceInfo &SI) {
  bool Success = true;

  // The opcode is followed by arguments. The source info is
  // attached to the address after the opcode.
  emit(P, Code, Op, Success);
  if (SI)
    SrcMap.emplace_back(Code.size(), SI);

  (..., emit(P, Code, Args, Success));
  return Success;
}

bool ByteCodeEmitter::jumpTrue(const LabelTy &Label) {
  return emitJt(getOffset(Label), SourceInfo{});
}

bool ByteCodeEmitter::jumpFalse(const LabelTy &Label) {
  return emitJf(getOffset(Label), SourceInfo{});
}

bool ByteCodeEmitter::jump(const LabelTy &Label) {
  return emitJmp(getOffset(Label), SourceInfo{});
}

bool ByteCodeEmitter::fallthrough(const LabelTy &Label) {
  emitLabel(Label);
  return true;
}

bool ByteCodeEmitter::speculate(const CallExpr *E, const LabelTy &EndLabel) {
  const Expr *Arg = E->getArg(0);
  PrimType T = Ctx.classify(Arg->getType()).value_or(PT_Ptr);
  if (!this->emitBCP(getOffset(EndLabel), T, E))
    return false;
  if (!this->visit(Arg))
    return false;
  return true;
}

//===----------------------------------------------------------------------===//
// Opcode emitters
//===----------------------------------------------------------------------===//

#define GET_LINK_IMPL
#include "Opcodes.inc"
#undef GET_LINK_IMPL