aboutsummaryrefslogtreecommitdiff
path: root/clang-tools-extra/clang-tidy/utils/DeclRefExprUtils.cpp
blob: 106feb7fb41720ef410579377df17b8569e7f433 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
//===--- DeclRefExprUtils.cpp - clang-tidy---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "DeclRefExprUtils.h"
#include "Matchers.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include <cassert>

namespace clang::tidy::utils::decl_ref_expr {

using namespace ::clang::ast_matchers;
using llvm::SmallPtrSet;

namespace {

template <typename S> bool isSetDifferenceEmpty(const S &S1, const S &S2) {
  for (auto E : S1)
    if (S2.count(E) == 0)
      return false;
  return true;
}

// Extracts all Nodes keyed by ID from Matches and inserts them into Nodes.
template <typename Node>
void extractNodesByIdTo(ArrayRef<BoundNodes> Matches, StringRef ID,
                        SmallPtrSet<const Node *, 16> &Nodes) {
  for (const auto &Match : Matches)
    Nodes.insert(Match.getNodeAs<Node>(ID));
}

// Returns true if both types refer to the same type,
// ignoring the const-qualifier.
bool isSameTypeIgnoringConst(QualType A, QualType B) {
  A = A.getCanonicalType();
  B = B.getCanonicalType();
  A.addConst();
  B.addConst();
  return A == B;
}

// Returns true if `D` and `O` have the same parameter types.
bool hasSameParameterTypes(const CXXMethodDecl &D, const CXXMethodDecl &O) {
  if (D.getNumParams() != O.getNumParams())
    return false;
  for (int I = 0, E = D.getNumParams(); I < E; ++I) {
    if (!isSameTypeIgnoringConst(D.getParamDecl(I)->getType(),
                                 O.getParamDecl(I)->getType()))
      return false;
  }
  return true;
}

// If `D` has a const-qualified overload with otherwise identical
// ref-qualifiers and parameter types, returns that overload.
const CXXMethodDecl *findConstOverload(const CXXMethodDecl &D) {
  assert(!D.isConst());

  DeclContext::lookup_result LookupResult =
      D.getParent()->lookup(D.getNameInfo().getName());
  if (LookupResult.isSingleResult()) {
    // No overload.
    return nullptr;
  }
  for (const Decl *Overload : LookupResult) {
    const auto *O = dyn_cast<CXXMethodDecl>(Overload);
    if (O && !O->isDeleted() && O->isConst() &&
        O->getRefQualifier() == D.getRefQualifier() &&
        hasSameParameterTypes(D, *O))
      return O;
  }
  return nullptr;
}

// Returns true if both types are pointers or reference to the same type,
// ignoring the const-qualifier.
bool pointsToSameTypeIgnoringConst(QualType A, QualType B) {
  assert(A->isPointerType() || A->isReferenceType());
  assert(B->isPointerType() || B->isReferenceType());
  return isSameTypeIgnoringConst(A->getPointeeType(), B->getPointeeType());
}

// Return true if non-const member function `M` likely does not mutate `*this`.
//
// Note that if the member call selects a method/operator `f` that
// is not const-qualified, then we also consider that the object is
// not mutated if:
//  - (A) there is a const-qualified overload `cf` of `f` that has
//  the
//    same ref-qualifiers;
//  - (B) * `f` returns a value, or
//        * if `f` returns a `T&`, `cf` returns a `const T&` (up to
//          possible aliases such as `reference` and
//          `const_reference`), or
//        * if `f` returns a `T*`, `cf` returns a `const T*` (up to
//          possible aliases).
//  - (C) the result of the call is not mutated.
//
// The assumption that `cf` has the same semantics as `f`.
// For example:
//   - In `std::vector<T> v; const T t = v[...];`, we consider that
//     expression `v[...]` does not mutate `v` as
//    `T& std::vector<T>::operator[]` has a const overload
//     `const T& std::vector<T>::operator[] const`, and the
//     result expression of type `T&` is only used as a `const T&`;
//   - In `std::map<K, V> m; V v = m.at(...);`, we consider
//     `m.at(...)` to be an immutable access for the same reason.
// However:
//   - In `std::map<K, V> m; const V v = m[...];`, We consider that
//     `m[...]` mutates `m` as `V& std::map<K, V>::operator[]` does
//     not have a const overload.
//   - In `std::vector<T> v; T& t = v[...];`, we consider that
//     expression `v[...]` mutates `v` as the result is kept as a
//     mutable reference.
//
// This function checks (A) ad (B), but the caller should make sure that the
// object is not mutated through the return value.
bool isLikelyShallowConst(const CXXMethodDecl &M) {
  assert(!M.isConst());
  // The method can mutate our variable.

  // (A)
  const CXXMethodDecl *ConstOverload = findConstOverload(M);
  if (ConstOverload == nullptr) {
    return false;
  }

  // (B)
  const QualType CallTy = M.getReturnType().getCanonicalType();
  const QualType OverloadTy = ConstOverload->getReturnType().getCanonicalType();
  if (CallTy->isReferenceType()) {
    return OverloadTy->isReferenceType() &&
           pointsToSameTypeIgnoringConst(CallTy, OverloadTy);
  }
  if (CallTy->isPointerType()) {
    return OverloadTy->isPointerType() &&
           pointsToSameTypeIgnoringConst(CallTy, OverloadTy);
  }
  return isSameTypeIgnoringConst(CallTy, OverloadTy);
}

// A matcher that matches DeclRefExprs that are used in ways such that the
// underlying declaration is not modified.
// If the declaration is of pointer type, `Indirections` specifies the level
// of indirection of the object whose mutations we are tracking.
//
// For example, given:
//   ```
//   int i;
//   int* p;
//   p = &i;  // (A)
//   *p = 3;  // (B)
//   ```
//
//  `declRefExpr(to(varDecl(hasName("p"))), doesNotMutateObject(0))` matches
//  (B), but `declRefExpr(to(varDecl(hasName("p"))), doesNotMutateObject(1))`
//  matches (A).
//
AST_MATCHER_P(DeclRefExpr, doesNotMutateObject, int, Indirections) {
  // We walk up the parents of the DeclRefExpr recursively. There are a few
  // kinds of expressions:
  //  - Those that cannot be used to mutate the underlying variable. We can stop
  //    recursion there.
  //  - Those that can be used to mutate the underlying variable in analyzable
  //    ways (such as taking the address or accessing a subobject). We have to
  //    examine the parents.
  //  - Those that we don't know how to analyze. In that case we stop there and
  //    we assume that they can modify the expression.

  struct StackEntry {
    StackEntry(const Expr *E, int Indirections)
        : E(E), Indirections(Indirections) {}
    // The expression to analyze.
    const Expr *E;
    // The number of pointer indirections of the object being tracked (how
    // many times an address was taken).
    int Indirections;
  };

  llvm::SmallVector<StackEntry, 4> Stack;
  Stack.emplace_back(&Node, Indirections);
  ASTContext &Ctx = Finder->getASTContext();

  while (!Stack.empty()) {
    const StackEntry Entry = Stack.back();
    Stack.pop_back();

    // If the expression type is const-qualified at the appropriate indirection
    // level then we can not mutate the object.
    QualType Ty = Entry.E->getType().getCanonicalType();
    for (int I = 0; I < Entry.Indirections; ++I) {
      assert(Ty->isPointerType());
      Ty = Ty->getPointeeType().getCanonicalType();
    }
    if (Ty->isVoidType() || Ty.isConstQualified())
      continue;

    // Otherwise we have to look at the parents to see how the expression is
    // used.
    const DynTypedNodeList Parents = Ctx.getParents(*Entry.E);
    // Note: most nodes have a single parents, but there exist nodes that have
    // several parents, such as `InitListExpr` that have semantic and syntactic
    // forms.
    for (const auto &Parent : Parents) {
      if (Parent.get<CompoundStmt>()) {
        // Unused block-scope statement.
        continue;
      }
      const Expr *const P = Parent.get<Expr>();
      if (P == nullptr) {
        // `Parent` is not an expr (e.g. a `VarDecl`).
        // The case of binding to a `const&` or `const*` variable is handled by
        // the fact that there is going to be a `NoOp` cast to const below the
        // `VarDecl`, so we're not even going to get there.
        // The case of copying into a value-typed variable is handled by the
        // rvalue cast.
        // This triggers only when binding to a mutable reference/ptr variable.
        // FIXME: When we take a mutable reference we could keep checking the
        // new variable for const usage only.
        return false;
      }
      // Cosmetic nodes.
      if (isa<ParenExpr>(P) || isa<MaterializeTemporaryExpr>(P)) {
        Stack.emplace_back(P, Entry.Indirections);
        continue;
      }
      if (const auto *const Cast = dyn_cast<CastExpr>(P)) {
        switch (Cast->getCastKind()) {
        // NoOp casts are used to add `const`. We'll check whether adding that
        // const prevents modification when we process the cast.
        case CK_NoOp:
        // These do nothing w.r.t. to mutability.
        case CK_BaseToDerived:
        case CK_DerivedToBase:
        case CK_UncheckedDerivedToBase:
        case CK_Dynamic:
        case CK_BaseToDerivedMemberPointer:
        case CK_DerivedToBaseMemberPointer:
          Stack.emplace_back(Cast, Entry.Indirections);
          continue;
        case CK_ToVoid:
        case CK_PointerToBoolean:
          // These do not mutate the underlying variable.
          continue;
        case CK_LValueToRValue: {
          // An rvalue is immutable.
          if (Entry.Indirections == 0)
            continue;
          Stack.emplace_back(Cast, Entry.Indirections);
          continue;
        }
        default:
          // Bail out on casts that we cannot analyze.
          return false;
        }
      }
      if (const auto *const Member = dyn_cast<MemberExpr>(P)) {
        if (const auto *const Method =
                dyn_cast<CXXMethodDecl>(Member->getMemberDecl())) {
          if (Method->isConst() || Method->isStatic()) {
            // The method call cannot mutate our variable.
            continue;
          }
          if (isLikelyShallowConst(*Method)) {
            // We still have to check that the object is not modified through
            // the method's return value (C).
            const auto MemberParents = Ctx.getParents(*Member);
            assert(MemberParents.size() == 1);
            const auto *Call = MemberParents[0].get<CallExpr>();
            // If `o` is an object of class type and `f` is a member function,
            // then `o.f` has to be used as part of a call expression.
            assert(Call != nullptr && "member function has to be called");
            Stack.emplace_back(
                Call,
                Method->getReturnType().getCanonicalType()->isPointerType()
                    ? 1
                    : 0);
            continue;
          }
          return false;
        }
        Stack.emplace_back(Member, 0);
        continue;
      }
      if (const auto *const OpCall = dyn_cast<CXXOperatorCallExpr>(P)) {
        // Operator calls have function call syntax. The `*this` parameter
        // is the first parameter.
        if (OpCall->getNumArgs() == 0 || OpCall->getArg(0) != Entry.E) {
          return false;
        }
        const auto *const Method =
            dyn_cast_or_null<CXXMethodDecl>(OpCall->getDirectCallee());

        if (Method == nullptr) {
          // This is not a member operator. Typically, a friend operator. These
          // are handled like function calls.
          return false;
        }

        if (Method->isConst() || Method->isStatic()) {
          continue;
        }
        if (isLikelyShallowConst(*Method)) {
          // We still have to check that the object is not modified through
          // the operator's return value (C).
          Stack.emplace_back(
              OpCall,
              Method->getReturnType().getCanonicalType()->isPointerType() ? 1
                                                                          : 0);
          continue;
        }
        return false;
      }

      if (const auto *const Op = dyn_cast<UnaryOperator>(P)) {
        switch (Op->getOpcode()) {
        case UO_AddrOf:
          Stack.emplace_back(Op, Entry.Indirections + 1);
          continue;
        case UO_Deref:
          assert(Entry.Indirections > 0);
          Stack.emplace_back(Op, Entry.Indirections - 1);
          continue;
        default:
          // Bail out on unary operators that we cannot analyze.
          return false;
        }
      }

      // Assume any other expression can modify the underlying variable.
      return false;
    }
  }

  // No parent can modify the variable.
  return true;
}

} // namespace

SmallPtrSet<const DeclRefExpr *, 16>
constReferenceDeclRefExprs(const VarDecl &VarDecl, const Stmt &Stmt,
                           ASTContext &Context, int Indirections) {
  auto Matches = match(findAll(declRefExpr(to(varDecl(equalsNode(&VarDecl))),
                                           doesNotMutateObject(Indirections))
                                   .bind("declRef")),
                       Stmt, Context);
  SmallPtrSet<const DeclRefExpr *, 16> DeclRefs;
  extractNodesByIdTo(Matches, "declRef", DeclRefs);

  return DeclRefs;
}

bool isOnlyUsedAsConst(const VarDecl &Var, const Stmt &Stmt,
                       ASTContext &Context, int Indirections) {
  // Collect all DeclRefExprs to the loop variable and all CallExprs and
  // CXXConstructExprs where the loop variable is used as argument to a const
  // reference parameter.
  // If the difference is empty it is safe for the loop variable to be a const
  // reference.
  auto AllDeclRefs = allDeclRefExprs(Var, Stmt, Context);
  auto ConstReferenceDeclRefs =
      constReferenceDeclRefExprs(Var, Stmt, Context, Indirections);
  return isSetDifferenceEmpty(AllDeclRefs, ConstReferenceDeclRefs);
}

SmallPtrSet<const DeclRefExpr *, 16>
allDeclRefExprs(const VarDecl &VarDecl, const Stmt &Stmt, ASTContext &Context) {
  auto Matches = match(
      findAll(declRefExpr(to(varDecl(equalsNode(&VarDecl)))).bind("declRef")),
      Stmt, Context);
  SmallPtrSet<const DeclRefExpr *, 16> DeclRefs;
  extractNodesByIdTo(Matches, "declRef", DeclRefs);
  return DeclRefs;
}

SmallPtrSet<const DeclRefExpr *, 16>
allDeclRefExprs(const VarDecl &VarDecl, const Decl &Decl, ASTContext &Context) {
  auto Matches = match(
      decl(forEachDescendant(
          declRefExpr(to(varDecl(equalsNode(&VarDecl)))).bind("declRef"))),
      Decl, Context);
  SmallPtrSet<const DeclRefExpr *, 16> DeclRefs;
  extractNodesByIdTo(Matches, "declRef", DeclRefs);
  return DeclRefs;
}

bool isCopyConstructorArgument(const DeclRefExpr &DeclRef, const Decl &Decl,
                               ASTContext &Context) {
  auto UsedAsConstRefArg = forEachArgumentWithParam(
      declRefExpr(equalsNode(&DeclRef)),
      parmVarDecl(hasType(matchers::isReferenceToConst())));
  auto Matches = match(
      decl(hasDescendant(
          cxxConstructExpr(UsedAsConstRefArg, hasDeclaration(cxxConstructorDecl(
                                                  isCopyConstructor())))
              .bind("constructExpr"))),
      Decl, Context);
  return !Matches.empty();
}

bool isCopyAssignmentArgument(const DeclRefExpr &DeclRef, const Decl &Decl,
                              ASTContext &Context) {
  auto UsedAsConstRefArg = forEachArgumentWithParam(
      declRefExpr(equalsNode(&DeclRef)),
      parmVarDecl(hasType(matchers::isReferenceToConst())));
  auto Matches = match(
      decl(hasDescendant(
          cxxOperatorCallExpr(UsedAsConstRefArg, hasOverloadedOperatorName("="),
                              callee(cxxMethodDecl(isCopyAssignmentOperator())))
              .bind("operatorCallExpr"))),
      Decl, Context);
  return !Matches.empty();
}

} // namespace clang::tidy::utils::decl_ref_expr