Age | Commit message (Collapse) | Author | Files | Lines |
|
Erasing the operation to which the current insertion point is set,
leaves the insertion point in an invalid state. This commit resets the
insertion point to the following operation.
Also adjust the insertion point when inlining a block.
|
|
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
|
|
I observed that we have the boundary comments in the codebase like:
```
//===----------------------------------------------------------------------===//
// ...
//===----------------------------------------------------------------------===//
```
I also observed that there are incomplete boundary comments. The
revision is generated by a script that completes the boundary comments.
```
//===----------------------------------------------------------------------===//
// ...
...
```
Signed-off-by: hanhanW <hanhan0912@gmail.com>
|
|
The vast majority of rewrite / conversion patterns uses a combined
`matchAndRewrite` instead of separate `match` and `rewrite` functions.
This PR optimizes the code base for the most common case where users
implement a combined `matchAndRewrite`. There are no longer any `match`
and `rewrite` functions in `RewritePattern`, `ConversionPattern` and
their derived classes. Instead, there is a `SplitMatchAndRewriteImpl`
class that implements `matchAndRewrite` in terms of `match` and
`rewrite`.
Details:
* The `RewritePattern` and `ConversionPattern` classes are simpler
(fewer functions). Especially the `ConversionPattern` class, which now
has 5 fewer functions. (There were various `rewrite` overloads to
account for 1:1 / 1:N patterns.)
* There is a new class `SplitMatchAndRewriteImpl` that derives from
`RewritePattern` / `OpRewritePatern` / ..., along with a type alias
`RewritePattern::SplitMatchAndRewrite` for convenience.
* Fewer `llvm_unreachable` are needed throughout the code base. Instead,
we can use pure virtual functions. (In cases where users previously had
to implement `rewrite` or `matchAndRewrite`, etc.)
* This PR may also improve the number of [`-Woverload-virtual`
warnings](https://discourse.llvm.org/t/matchandrewrite-hiding-virtual-functions/84933)
that are produced by GCC. (To be confirmed...)
Note for LLVM integration: Patterns with separate `match` / `rewrite`
implementations, must derive from `X::SplitMatchAndRewrite` instead of
`X`.
---------
Co-authored-by: River Riddle <riddleriver@gmail.com>
|
|
iter_args (#87019)
As part of this extension this change also does some general cleanup
1) Make all the methods take `RewriterBase` as arguments instead of
creating their own builders that tend to crash when used within
pattern rewrites
2) Split `coalesePerfectlyNestedLoops` into two separate methods, one
for `scf.for` and other for `affine.for`. The templatization didnt
seem to be buying much there.
Also general clean up of tests.
|
|
Before this change: `notifyOperationReplaced` was triggered when calling
`RewriteBase::replaceOp`.
After this change: `notifyOperationReplaced` is triggered when
`RewriterBase::replaceAllOpUsesWith` or `RewriterBase::replaceOp` is
called.
Until now, every `notifyOperationReplaced` was always sent together with
a `notifyOperationErased`, which made that `notifyOperationErased`
callback irrelevant. More importantly, when a user called
`RewriterBase::replaceAllOpUsesWith`+`RewriterBase::eraseOp` instead of
`RewriterBase::replaceOp`, no `notifyOperationReplaced` callback was
sent, even though the two notations are semantically equivalent. As an
example, this can be a problem when applying patterns with the transform
dialect because the `TrackingListener` will only see the
`notifyOperationErased` callback and the payload op is dropped from the
mappings.
Note: It is still possible to write semantically equivalent code that
does not trigger a `notifyOperationReplaced` (e.g., when op results are
replaced one-by-one), but this commit already improves the situation a
lot.
|
|
#82629 added additional overloads to `replaceAllUsesWith` and
`replaceUsesWithIf`. This caused a build breakage with MSVC when called
with ops that can implicitly convert to `Value`.
```
external/llvm-project/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp(881): error C2666: 'mlir::RewriterBase::replaceAllUsesWith': 2 overloads have similar conversions
external/llvm-project/mlir/include\mlir/IR/PatternMatch.h(631): note: could be 'void mlir::RewriterBase::replaceAllUsesWith(mlir::Operation *,mlir::ValueRange)'
external/llvm-project/mlir/include\mlir/IR/PatternMatch.h(626): note: or 'void mlir::RewriterBase::replaceAllUsesWith(mlir::ValueRange,mlir::ValueRange)'
external/llvm-project/mlir/include\mlir/IR/PatternMatch.h(616): note: or 'void mlir::RewriterBase::replaceAllUsesWith(mlir::Value,mlir::Value)'
external/llvm-project/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp(882): note: while trying to match the argument list '(mlir::tensor::ExtractSliceOp, T)'
with
[
T=mlir::Value
]
```
Note: The LLVM build bots (Linux and Windows) did not break, this seems
to be an issue with `Tools\MSVC\14.29.30133\bin\HostX64\x64\cl.exe`.
This change renames the newly added overloads to `replaceAllOpUsesWith`
and `replaceOpUsesWithIf`.
|
|
* `replaceOp` replaces all uses of the original op and erases the old
op.
* `replaceAllUsesWith` replaces all uses of the original op/value/block.
It does not erase any IR.
This commit renames `replaceOpWithIf` to `replaceUsesWithIf`.
`replaceOpWithIf` was a misnomer because the function never erases the
original op. Similarly, `replaceOpWithinBlock` is renamed to
`replaceUsesWithinBlock`. (No "operation replaced" is sent because the
op is not erased.)
Also improve comments.
|
|
#66771 introduce `llvm::post_order(&r.front())` which is equal to
`r.front().getSuccessor(...)`.
It will visit the succ block of current block. But actually here need to
visit all block of region in reverse order.
Fixes: #77420.
|
|
Rename listener callback names:
* `notifyOperationRemoved` -> `notifyOperationErased`
* `notifyBlockRemoved` -> `notifyBlockErased`
The current callback names are misnomers. The callbacks are triggered
when an operation/block is erased, not when it is removed (unlinked).
E.g.:
```c++
/// Notify the listener that the specified operation is about to be erased.
/// At this point, the operation has zero uses.
///
/// Note: This notification is not triggered when unlinking an operation.
virtual void notifyOperationErased(Operation *op) {}
```
This change is in preparation of adding listener support to the dialect
conversion. The dialect conversion internally unlinks IR before erasing
it at a later point of time. There is an important difference between
"remove" and "erase". Lister callback names should be accurate to avoid
confusion.
|
|
Similar to `OpBuilder::clone`, operation/block insertion notifications
should be sent when cloning the contents of a region. E.g., this is to
ensure that the newly created operations are put on the worklist of the
greedy pattern rewriter driver.
Also move `cloneRegionBefore` from `RewriterBase` to `OpBuilder`. It
only creates new IR, so it should be part of the builder API (like
`clone(Operation &)`). The function does not have to be virtual. Now
that notifications are properly sent, the override in the dialect
conversion is no longer needed.
|
|
When a block is split with `RewriterBase::splitBlock`, a
`notifyBlockInserted` notification, followed by
`notifyOperationInserted` notifications (for moving over the operations
into the new block) should be sent. This commit adds those
notifications.
|
|
When a block is inlined into another block, the nested operations are
moved into another block and the `notifyOperationInserted` callback
should be triggered. This commit adds the missing notifications for:
* `RewriterBase::inlineBlockBefore`
* `RewriterBase::mergeBlocks`
|
|
(#79579)
This commit adds a new method to the rewriter API: `moveBlockBefore`.
This op is utilized by `inlineRegionBefore` and covered by dialect
conversion test cases.
Also fixes a bug in `moveOpBefore`, where the previous op location was
not passed correctly. Adds a test case to
`test-strict-pattern-driver.mlir`.
|
|
This change makes the callback consistent with
`notifyOperationInserted`: both now notify about IR insertion, not IR
creation. See also #78988.
This change also simplifies the dialect conversion: it is no longer
necessary to override the `inlineRegionBefore` method. All information
that is necessary for rollback is provided with the
`notifyBlockInserted` callback.
|
|
The pattern rewriter documentation states that "*all* IR mutations [...]
are required to be performed via the `PatternRewriter`." This commit
adds two functions that were missing from the rewriter API:
`moveOpBefore` and `moveOpAfter`.
After an operation was moved, the `notifyOperationInserted` callback is
triggered. This allows listeners such as the greedy pattern rewrite
driver to react to IR changes.
This commit narrows the discrepancy between the kind of IR modification
that can be performed and the kind of IR modifications that can be
listened to.
|
|
There is already a "block inserted" notification (in
`OpBuilder::Listener`), so there should also be a "block removed"
notification.
The purpose of this change is to make the listener API more mature.
There is currently a gap between what kind of IR changes can be made and
what IR changes can be listened to. At the moment, the only way to
inform listeners about "block removal" is to send a manual
`notifyOperationModified` for the parent op (e.g., by wrapping the
`eraseBlock(b)` method call in `updateRootInPlace(b->getParentOp())`).
This tells the listener that *something* has changed, but it is somewhat
of an API abuse.
|
|
This commit renames 4 pattern rewriter API functions:
* `updateRootInPlace` -> `modifyOpInPlace`
* `startRootUpdate` -> `startOpModification`
* `finalizeRootUpdate` -> `finalizeOpModification`
* `cancelRootUpdate` -> `cancelOpModification`
The term "root" is a misnomer. The root is the op that a rewrite pattern
matches against
(https://mlir.llvm.org/docs/PatternRewriter/#root-operation-name-optional).
A rewriter must be notified of all in-place op modifications, not just
in-place modifications of the root
(https://mlir.llvm.org/docs/PatternRewriter/#pattern-rewriter). The old
function names were confusing and have contributed to various broken
rewrite patterns.
Note: The new function names use the term "modify" instead of "update"
for consistency with the `RewriterBase::Listener` terminology
(`notifyOperationModified`).
|
|
Make it so that PDL in pattern rewrites can be optionally disabled.
PDL is still enabled by default and not optional bazel. So this should
be a NOP for most folks, while enabling other to disable.
This only works with tests disabled. With tests enabled this still
compiles but tests fail as there is no lit config to disable tests that
depend on PDL rewrites yet.
|
|
This reverts commit 5930725c891b60f5fb94058c6c08a55a2e03d83e.
|
|
Make it so that PDL in pattern rewrites can be optionally disabled.
PDL is still enabled by default and not optional bazel. So this should
be a NOP for most folks, while enabling other to disable.
This is piped through mlir-tblgen invocation and that could be
changed/avoided by splitting up the passes file instead.
This only works with tests disabled. With tests enabled this still
compiles but tests fail as there is no lit config to disable tests that
depend on PDL rewrites yet.
|
|
When cloning an op, the `notifyOperationInserted` callback is triggered
for all nested ops. Similarly, the `notifyOperationRemoved` callback
should be triggered for all nested ops when removing an op.
Listeners may inspect the IR during a `notifyOperationRemoved` callback.
Therefore, when multiple ops are removed in a single
`RewriterBase::eraseOp` call, the notifications must be triggered in an
order in which the ops could have been removed one-by-one:
* Op removals must be interleaved with `notifyOperationRemoved`
callbacks. A callback is triggered right before the respective op is
removed.
* Ops are removed post-order and in reverse order. Other traversal
orders could delete an op that still has uses. (This is not avoidable in
graph regions and with cyclic block graphs.)
Differential Revision: Imported from https://reviews.llvm.org/D144193.
|
|
`RewriterBase::Listener::notifyOperationReplaced` notifies observers that an op is about to be replaced with a range of values. This notification is not very useful for ops without results, because it does not specify the replacement op (and it cannot be deduced from the replacement values). It provides no additional information over the `notifyOperationRemoved` notification.
This revision adds an additional notification when a rewriter replaces an op with another op. By default, this notification triggers the original "op replaced with values" notification, so there is no functional change for existing code.
This new API is useful for the transform dialect, which needs to track op replacements. (Updated in a subsequent revision.)
Also includes minor documentation improvements.
Differential Revision: https://reviews.llvm.org/D152814
|
|
* `RewriterBase::mergeBlocks` is simplified: it is implemented in terms of `mergeBlockBefore`.
* The signature of `mergeBlockBefore` is consistent with other API (such as `inlineRegionBefore`): an overload for a `Block::iterator` is added.
* Additional safety checks are added to `mergeBlockBefore`: detect cases where the resulting IR could be invalid (no more `dropAllUses`) or partly unreachable (likely a case of incorrect API usage).
* Rename `mergeBlockBefore` to `inlineBlockBefore`.
Differential Revision: https://reviews.llvm.org/D144969
|
|
Each user of the original value is modified in-place. Therefore, the corresponding notification should be triggered.
Also fixes a bug where `RewriterBase::mergeBlocks` did not notify the GreedyPatternRewriteDriver when replacing uses of block arguments. This function does not trigger "operation replaced" notifications, so the GreedyPatternRewriteDriver was not made aware of such IR changes.
Differential Revision: https://reviews.llvm.org/D144549
|
|
This is for consistency with `Value::replaceUsesWithIf`.
Differential Revision: https://reviews.llvm.org/D144547
|
|
This callback is triggered by `finalizeRootUpdate`. This allows listeners to listen for in-place op modifications without creating a new RewriterBase subclass.
Differential Revision: https://reviews.llvm.org/D143380
|
|
```
OpBuilder OpBuilder::Listener
^ ^
| |
RewriterBase RewriterBase::Listener
```
* Clients can listen to IR modifications with `RewriterBase::Listener`.
* `RewriterBase` no longer inherits from `OpBuilder::Listener`.
* Only a single listener can be registered at the moment (same as `OpBuilder`).
RFC: https://discourse.llvm.org/t/rfc-listeners-for-rewriterbase/68198
Differential Revision: https://reviews.llvm.org/D143339
|
|
When changing IR in a RewriterPattern, all changes must go through the
rewriter. There are several convenience functions in RewriterBase that
help with high-level modifications, such as replaceAllUsesWith for
Values, but there is currently none to do the same task for Blocks.
Reviewed By: mehdi_amini, ingomueller-net
Differential Revision: https://reviews.llvm.org/D142525
|
|
This method allows to selectively control from the caller when to
replace the uses of a `Value`. Still notifies the rewriter that the
user is updated in-place.
Differential Revision: https://reviews.llvm.org/D141026
|
|
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
|
|
This patch adds `replaceAllUsesExcept` to the rewriter class.
The implementation is copy-pasted from Value + calling
`updateRootInPlace` to notify the listeners about the
corresponding IR changes.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D139382
|
|
Finding uses of a value and replacing them with a new one is a common method. I have not seen an safe and easy shortcut that does that. This revision attempts to address that by intoroducing `replaceUsesOfWith` to `RewriterBase`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D138110
|
|
Up until now PDL(L) has not supported dialect conversion because we had no
way of remapping values or integrating with type conversions. This commit
rectifies that by adding a new "pattern configuration" concept to PDL. This
essentially allows for attaching external configurations to patterns, which
can hook into pattern events (for now just the scope of a rewrite, but we
could also pass configs to native rewrites as well). This allows for injecting
the type converter into the conversion pattern rewriter.
Differential Revision: https://reviews.llvm.org/D133142
|
|
It is useful for PatternRewriter listeners to know the values that are
replacing the op in addition to only the fact of the op being replaced
for being able to keep track of changes or for debugging.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D134748
|
|
* Constraints/Rewrites registered before a pattern was added were dropped
* Constraints/Rewrites may be registered multiple times (if different pattern sets depend on them)
* ModuleOp no longer has a terminator, so we shouldn't be removing the terminator from it
Differential Revision: https://reviews.llvm.org/D114816
|
|
This is commit 2 of 4 for the multi-root matching in PDL, discussed in https://llvm.discourse.group/t/rfc-multi-root-pdl-patterns-for-kernel-matching/4148 (topic flagged for review).
This commit implements the features needed for the execution of the new operations pdl_interp.get_accepting_ops, pdl_interp.choose_op:
1. The implementation of the generation and execution of the two ops.
2. The addition of Stack of bytecode positions within the ByteCodeExecutor. This is needed because in pdl_interp.choose_op, we iterate over the values returned by pdl_interp.get_accepting_ops until we reach finalize. When we reach finalize, we need to return back to the position marked in the stack.
3. The functionality to extend the lifetime of values that cross the nondeterministic choice. The existing bytecode generator allocates the values to memory positions by representing the liveness of values as a collection of disjoint intervals over the matcher positions. This is akin to register allocation, and substantially reduces the footprint of the bytecode executor. However, because with iterative operation pdl_interp.choose_op, execution "returns" back, so any values whose original liveness cross the nondeterminstic choice must have their lifetime executed until finalize.
Testing: pdl-bytecode.mlir test
Reviewed By: rriddle, Mogball
Differential Revision: https://reviews.llvm.org/D108547
|
|
operations in rewrite patterns
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.
Differential Revision: https://reviews.llvm.org/D98986
|
|
Supporting ranges in the byte code requires additional complexity, given that a range can't be easily representable as an opaque void *, as is possible with the existing bytecode value types (Attribute, Type, Value, etc.). To enable representing a range with void *, an auxillary storage is used for the actual range itself, with the pointer being passed around in the normal byte code memory. For type ranges, a TypeRange is stored. For value ranges, a ValueRange is stored. The above problem represents a majority of the complexity involved in this revision, the rest is adapting/adding byte code operations to support the changes made to the PDL interpreter in the parent revision.
After this revision, PDL will have initial end-to-end support for variadic operands/results.
Differential Revision: https://reviews.llvm.org/D95723
|
|
ApplyNativeRewriteOp.
This has a numerous amount of benefits, given the overly clunky nature of CreateNativeOp:
* Users can now call into arbitrary rewrite functions from inside of PDL, allowing for more natural interleaving of PDL/C++ and enabling for more of the pattern to be in PDL.
* Removes the need for an additional set of C++ functions/registry/etc. The new ApplyNativeRewriteOp will use the same PDLRewriteFunction as the existing RewriteOp. This reduces the API surface area exposed to users.
This revision also introduces a new PDLResultList class. This class is used to provide results of native rewrite functions back to PDL. We introduce a new class instead of using a SmallVector to simplify the work necessary for variadics, given that ranges will require some changes to the structure of PDLValue.
Differential Revision: https://reviews.llvm.org/D95720
|
|
pattern rewrites
This revision adds two new classes, RewriterBase and IRRewriter. RewriterBase is a new shared base class between IRRewriter and PatternRewriter. PatternRewriter will continue to be the base class used to perform rewrites within a rewrite pattern. IRRewriter on the other hand, is a new class that allows for tracking IR rewrites from outside of a rewrite pattern. In this revision all of the old API from PatternRewriter is moved to RewriterBase, but the distinction between IRRewriter and PatternRewriter is kept on the chance that a necessary API divergence happens in the future.
Currently if you want to have some utility that transforms a piece of IR and share it between pattern and non-pattern code, you have to duplicate it. This revision enables the creation of utilities that can be invoked from rewrite patterns and normal transformation code:
```c++
void someSharedUtility(RewriterBase &rewriter, ...) {
// Some interesting IR mutation here.
}
// Some RewritePattern
LogicalResult MyPattern::matchAndRewrite(Operation *op, PatternRewriter &rewriter) {
...
someSharedUtility(rewriter, ...);
...
}
// Some Pass
void MyPass::runOnOperation() {
...
IRRewriter rewriter(...);
someSharedUtility(rewriter, ...);
}
```
Differential Revision: https://reviews.llvm.org/D94638
|
|
operation
This revision adds a new `replaceOpWithIf` hook that replaces uses of an operation that satisfy a given functor. If all uses are replaced, the operation gets erased in a similar manner to `replaceOp`. DialectConversion support will be added in a followup as this requires adjusting how replacements are tracked there.
Differential Revision: https://reviews.llvm.org/D94632
|
|
OwningRewritePatternList
PDL patterns are now supported via a new `PDLPatternModule` class. This class contains a ModuleOp with the pdl::PatternOp operations representing the patterns, as well as a collection of registered C++ functions for native constraints/creations/rewrites/etc. that may be invoked via the pdl patterns. Instances of this class are added to an OwningRewritePatternList in the same fashion as C++ RewritePatterns, i.e. via the `insert` method.
The PDL bytecode is an in-memory representation of the PDL interpreter dialect that can be efficiently interpreted/executed. The representation of the bytecode boils down to a code array(for opcodes/memory locations/etc) and a memory buffer(for storing attributes/operations/values/any other data necessary). The bytecode operations are effectively a 1-1 mapping to the PDLInterp dialect operations, with a few exceptions in cases where the in-memory representation of the bytecode can be more efficient than the MLIR representation. For example, a generic `AreEqual` bytecode op can be used to represent AreEqualOp, CheckAttributeOp, and CheckTypeOp.
The execution of the bytecode is split into two phases: matching and rewriting. When matching, all of the matched patterns are collected to avoid the overhead of re-running parts of the matcher. These matched patterns are then considered alongside the native C++ patterns, which rewrite immediately in-place via `RewritePattern::matchAndRewrite`, for the given root operation. When a PDL pattern is matched and has the highest benefit, it is passed back to the bytecode to execute its rewriter.
Differential Revision: https://reviews.llvm.org/D89107
|
|
fix typos in comments and documents
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D90089
|
|
There are several pieces of pattern rewriting infra in IR/ that really shouldn't be there. This revision moves those pieces to a better location such that they are easier to evolve in the future(e.g. with PDL). More concretely this revision does the following:
* Create a Transforms/GreedyPatternRewriteDriver.h and move the apply*andFold methods there.
The definitions for these methods are already in Transforms/ so it doesn't make sense for the declarations to be in IR.
* Create a new lib/Rewrite library and move PatternApplicator there.
This new library will be focused on applying rewrites, and will also include compiling rewrites with PDL.
Differential Revision: https://reviews.llvm.org/D89103
|
|
The Pattern class was originally intended to be used for solely matching operations, but that use never materialized. All of the pattern infrastructure uses RewritePattern, and the infrastructure for pure matching(Matchers.h) is implemented inline. This means that this class isn't a useful abstraction at the moment, so this revision refactors it to solely encapsulate the "metadata" of a pattern. The metadata includes the various state describing a pattern; benefit, root operation, etc. The API on PatternApplicator is updated to now operate on `Pattern`s as nothing special from `RewritePattern` is necessary.
This refactoring is also necessary for the upcoming use of PDL patterns alongside C++ rewrite patterns.
Differential Revision: https://reviews.llvm.org/D86258
|
|
The rewrite engine's cost model may determine some patterns to be irrelevant
ahead of their application. These patterns were silently ignored previously and
now cause a message in `--debug` mode.
Differential Revision: https://reviews.llvm.org/D87290
|
|
middle of another block.
- This utility to merge a block anywhere into another one can help inline single
block regions into other blocks.
- Modified patterns test to use the new function.
Differential Revision: https://reviews.llvm.org/D86251
|
|
Traditionally patterns have always had the root operation kind hardcoded to a specific operation name. This has worked well for quite some time, but it has certain limitations that make it undesirable. For example, some lowering have the same implementation for many different operations types with a few lowering entire dialects using the same pattern implementation. This problem has led to several "solutions":
a) Provide a template implementation to the user so that they can instantiate it for each operation combination, generally requiring the inclusion of the auto-generated operation definition file.
b) Use a non-templated pattern that allows for providing the name of the operation to match
- No one ever does this, because enumerating operation names can be cumbersome and so this quickly devolves into solution a.
This revision removes the restriction that patterns have a hardcoded root type, and allows for a class patterns that could match "any" operation type. The major downside of root-agnostic patterns is that they make certain pattern analyses more difficult, so it is still very highly encouraged that an operation specific pattern be used whenever possible.
Differential Revision: https://reviews.llvm.org/D82066
|
|
This class enables for abstracting more of the details for the rewrite process, and will allow for clients to apply specific cost models to the pattern list. This allows for DialectConversion and the GreedyPatternRewriter to share the same underlying matcher implementation. This also simplifies the plumbing necessary to support dynamic patterns.
Differential Revision: https://reviews.llvm.org/D81985
|