Age | Commit message (Collapse) | Author | Files | Lines |
|
I observed that we have the boundary comments in the codebase like:
```
//===----------------------------------------------------------------------===//
// ...
//===----------------------------------------------------------------------===//
```
I also observed that there are incomplete boundary comments. The
revision is generated by a script that completes the boundary comments.
```
//===----------------------------------------------------------------------===//
// ...
...
```
Signed-off-by: hanhanW <hanhan0912@gmail.com>
|
|
Relands #100361 with fixed dependencies.
|
|
(#107984)
Reverts llvm/llvm-project#100361
This commit caused some linker errors. (Missing `MLIRCallInterfaces`
dependency.)
|
|
Allow customization of the `resolveCallable` method in the
`CallOpInterface`. This change allows for operations implementing this
interface to provide their own logic for resolving callables.
- Introduce the `resolveCallable` method, which does not include the
optional symbol table parameter. This method replaces the previously
existing extra class declaration `resolveCallable`.
- Introduce the `resolveCallableInTable` method, which incorporates the
symbol table parameter. This method replaces the previous extra class
declaration `resolveCallable` that used the optional symbol table
parameter.
|
|
|
|
|
|
The callgraph currently contains a special external node that is used both as the quasi caller for any externally callable as well as callees that could not be resolved.
This has one negative side effect however, which is the motivation for this patch: It leads to every externally callable which contains a call that could not be resolved (eg. an indirect call), to be put into one giant SCC when iterating over the SCCs of the call graph.
This patch fixes that issue by creating a second special callgraph node that acts as the callee for any unresolved callable. This breaks the cycles produced in the callgraph, yielding proper SCCs for all direct calls.
Differential Revision: https://reviews.llvm.org/D133585
|
|
lookups
This transforms the symbol lookups to O(1) from O(NM), greatly speeding up both passes. For a large MLIR module this shaved seconds off of the compilation time.
Differential Revision: https://reviews.llvm.org/D89522
|
|
Differential Revision: https://reviews.llvm.org/D86848
|
|
This is a wrapper around vector of NamedAttributes that keeps track of whether sorted and does some minimal effort to remain sorted (doing more, e.g., appending attributes in sorted order, could be done in follow up). It contains whether sorted and if a DictionaryAttr is queried, it caches the returned DictionaryAttr along with whether sorted.
Change MutableDictionaryAttr to always return a non-null Attribute even when empty (reserve null cases for errors). To this end change the getter to take a context as input so that the empty DictionaryAttr could be queried. Also create one instance of the empty dictionary attribute that could be reused without needing to lock context etc.
Update infer type op interface to use DictionaryAttr and use NamedAttrList to avoid incurring multiple conversion costs.
Fix bug in sorting helper function.
Differential Revision: https://reviews.llvm.org/D79463
|
|
nested operations
This allows for walking the operations nested directly within a region, without traversing nested regions.
Differential Revision: https://reviews.llvm.org/D79056
|
|
Makes the relationship and function clearer. Accordingly rename getAttrList to getMutableAttrDict.
Differential Revision: https://reviews.llvm.org/D79125
|
|
Summary: This is somewhat complex(annoying) as it involves directly tracking the uses within each of the callgraph nodes, and updating them as needed during inlining. The benefit of this is that we can have a more exact cost model, enable inlining some otherwise non-inlinable cases, and also ensure that newly dead callables are properly disposed of.
Differential Revision: https://reviews.llvm.org/D75476
|
|
Interfaces/ directory.
The interfaces themselves aren't really analyses, they may be used by analyses though. Having them in Analysis can also create cyclic dependencies if an analysis depends on a specific dialect, that also provides one of the interfaces.
Differential Revision: https://reviews.llvm.org/D75867
|
|
Summary: This is the most common operation performed on a CallOpInterface. This just moves the existing functionality from the CallGraph so that other users can access it.
Differential Revision: https://reviews.llvm.org/D74250
|
|
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
|
|
CallableOpInterface
Summary:
This enables tracking calls that cross symbol table boundaries. It also simplifies some of the implementation details of CallableOpInterface, i.e. there can only be one region within the callable operation.
Depends On D72042
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72043
|
|
properly value-typed.
Summary: These were temporary methods used to simplify the transition.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D72548
|
|
ValuePtr was a temporary typedef during the transition to a value-typed Value.
PiperOrigin-RevId: 286945714
|
|
PiperOrigin-RevId: 286906740
|
|
Value being value-typed.
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
|
|
PiperOrigin-RevId: 281501234
|
|
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
|
|
This will allow for inlining newly devirtualized calls, as well as give a more accurate cost model(when we have one). Currently canonicalization will only run for nodes that have no child edges, as the child nodes may be erased during canonicalization. We can support this in the future, but it requires more intricate deletion tracking.
PiperOrigin-RevId: 274011386
|
|
Using the two call interfaces, CallOpInterface and CallableOpInterface, this change adds support for an initial multi-level CallGraph. This call graph builds a set of nodes for each callable region, and connects them via edges. An edge may be any of the following types:
* Abstract
- An edge not produced by a call operation, used for connecting to internal nodes from external nodes.
* Call
- A call edge is an edge defined via a call-like operation.
* Child
- This is an artificial edge connecting nested callgraph nodes.
This callgraph will be used, and improved upon, to begin supporting more interesting interprocedural analyses and transformation. In a followup, this callgraph will be used to support more complex inlining support.
PiperOrigin-RevId: 270724968
|
|
These two operation interfaces will be used in a followup to support building a callgraph:
* CallOpInterface
- Operations providing this interface are call-like, and have a "call" target. A call target may be a symbol reference, via SymbolRefAttr, or a SSA value.
* CallableOpInterface
- Operations providing this interfaces define destinations to call-like operations, e.g. FuncOp. These operations may define any number of callable regions.
PiperOrigin-RevId: 270723300
|