Age | Commit message (Collapse) | Author | Files | Lines |
|
Summary:
After the last round of cleanups, this script was almost a no-op. The
only piece of functionality that remained was the one which tried to
make the swig-generated function signatures more pythonic.
The "tried" part is important here, as it wasn't doing a really good job
and the end result was not valid python nor c (e.g.,
SetExecutable(SBAttachInfo self, str const * path)).
Doing these transformations another way is not possible, as these
signatures are generated by swig, and not present in source. However,
given that this is the only reason why we need a swig post-process step,
and that the current implementation is pretty sub-optimal, this patch
simply abandons the signature fixup idea, and chooses to simplify our
build process instead.
Reviewers: amccarth, jingham, clayborg
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D61000
llvm-svn: 359092
|
|
instead, remove \a directly from the interface files.
llvm-svn: 358967
|
|
The strings have been already cleaned up in r358683, so this code is not
doing anything anymore.
While comparing the outputs before and after removing the formatting
code, I've found a couple of docstrings that managed to escape my perl
script in r358683, so I format them manually with this patch.
llvm-svn: 358846
|
|
There are no patterns like that in the generated swig files (there
probably were some back in the days when we were running swig over the
header files directly), so this is dead code and has no effect on the
generated file.
llvm-svn: 357890
|
|
This is the last functional change to the generated python module being
done by modify-python-lldb.py. The remaining code just deals with
reformatting of comments.
llvm-svn: 357755
|
|
Summary:
This patch moves the modify-python-lldb code for adding new functions to
the SBModule class into the SBModule interface file. As this is the last
class using this functionality, I also remove all support for this kind
of modifications from modify-python-lldb.py.
Reviewers: amccarth, clayborg, jingham
Subscribers: zturner, lldb-commits
Differential Revision: https://reviews.llvm.org/D60195
llvm-svn: 357680
|
|
Summary:
Instead of modifying the swig-generated code, just add the appropriate
methods to the interface files in order to get the swig to do the
generation for us.
This is a straight-forward move from the python script to the interface
files. The single class which has nontrivial handling in the script
(SBModule) has been left for a separate patch.
For the cases where I did not find any tests exercising the
iteration/length methods (i.e., no tests failed after I stopped emitting
them), I tried to add basic tests for that functionality.
Reviewers: zturner, jingham, amccarth
Subscribers: jdoerfert, lldb-commits
Differential Revision: https://reviews.llvm.org/D60119
llvm-svn: 357572
|
|
Summary:
modify-python-lldb.py had code to insert python equality operators to
some classes. Some of those classes already had c++ equality operators,
and some didn't.
This makes the situation more consistent, by removing all equality
handilng from modify-python-lldb. Instead, I add c++ operators to
classes where they were missing, and expose them in the swig interface
files so that they are available to python too.
The only tricky case was the SBAddress class, which had an operator==
defined as a free function, which is not handled by swig. This function
cannot be removed without breaking ABI, and we cannot add an extra
operator== member, as that would make equality comparisons ambiguous.
For this class, I define a python __eq__ function by hand and have it
delegate to the operator!=, which I have defined as a member function.
This isn't fully NFC, as the semantics of some equality functions in
python changes slightly, but I believe it changes for the better (e.g.,
previously SBBreakpoint.__eq__ would consider two breakpoints with the
same ID as equal, even if they belonged to different targets; now they
are only equal if they belong to the same target).
Reviewers: jingham, clayborg, zturner
Subscribers: jdoerfert, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D59819
llvm-svn: 357463
|
|
Summary:
In my next step at cleaning up modify-python-lldb.py, I started focusing
on equality comparison. To my surprise, I found out that both python and
c++ versions of the SBType class implement equality comparison, but each
one does it differently. While the python version was implemented in
terms of type name equality, the C++ one used a deep comparison on the
underlying objects.
Removing the python version caused one test to fail (TestTypeList). This
happened because the c++ version of operator== boiled down to
TypePair::operator==, which contains two items: the compiler_type and
type_sp. In this case, the compiler_type was identical, but one of the
objects had the type_sp field unset.
I tried fixing the code so that both objects keep their type_sp member,
but it wasn't easy, because there are so many operations which just work
with the CompilerType types, and so any operation on the SBType (the
test in question was doing GetPointeeType on the type of one variable
and expecting it to match the type of another variable), cause that
second member to be lost.
So instead, here I relax the equality comparison on the TypePair
class. Now, this class ignores the type_sp for the purposes of
comparison, and uses the CompilerType only. This seems reasonable, as
each TypeSP is able to convert itself to a CompilerType.
Reviewers: clayborg, aprantl, serge-sans-paille
Subscribers: jdoerfert, lldb-commits
Differential Revision: https://reviews.llvm.org/D59217
llvm-svn: 356048
|
|
Summary:
Our python version of the SB API has (the python equivalent of)
operator bool, but the C++ version doesn't.
This is because our python operators are added by modify-python-lldb.py,
which performs postprocessing on the swig-generated interface files.
In this patch, I add the "operator bool" to all SB classes which have an
IsValid method (which is the same logic used by modify-python-lldb.py).
This way, we make the two interfaces more constent, and it allows us to
rely on swig's automatic syntesis of python __nonzero__ methods instead
of doing manual fixups.
Reviewers: zturner, jingham, clayborg, jfb, serge-sans-paille
Subscribers: jdoerfert, lldb-commits
Differential Revision: https://reviews.llvm.org/D58792
llvm-svn: 355824
|
|
Summary:
Swig is perfectly capable of inserting blocks of python code into its
output (and we use those fascilities already), so there's no need for
this to be done in a post-process step.
lldb_iter is a general-purpose utility used from many classes, so I add
it to the main swig file. The other two blocks are tied to a specific
class, so I add it to the interface file of that class.
Reviewers: zturner, jingham, serge-sans-paille
Subscribers: jdoerfert, lldb-commits
Differential Revision: https://reviews.llvm.org/D58350
llvm-svn: 354975
|
|
Summary:
Instead of doing string chopping on the resulting python file, get swig
to output the version for us. The two things which make slightly
non-trivial are:
- in order to get swig to expand SWIG_VERSION for us, we cannot use
%pythoncode directly, but we have to go through an intermediate macro.
- SWIG_VERSION is a hex number, but it's components are supposed to be
interpreted decimally, so there is a bit of integer magic needed to
get the right number to come out.
I've tested that this approach works both with the latest (3.0.12) and
oldest (1.3.40) supported swig.
Reviewers: zturner, jingham, serge-sans-paille
Subscribers: jdoerfert, lldb-commits
Differential Revision: https://reviews.llvm.org/D58172
llvm-svn: 354104
|
|
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
|
|
The goal here is to allow us to add skip / xfail decorators
based on SWIG version.
llvm-svn: 253262
|
|
llvm-svn: 252384
|
|
Python has a complicated mechanism of checking an objects truthity.
This involves a number of steps, which end with calling two private
methods on an object (if they are implemented). In Python 2 these
two methods are `__nonzero__` and `__len__`, and in Python 3 they
are `__bool__` and `__len__`. Because we *also* define a __len__
method for certain iterable types, this was triggering a situation
in Python 3 where `__nonzero__` wasn't defined, so it was calling
`__len__`, which was returning 0 (for example an SBDebugger with
no targets), and as a result the truthosity was determined to be
False.
We fix this by correctly using ` __bool__` for Python 3, and leave
the behavior under Python 2 unchanged.
Note that this fix is only implemented in the SWIG generation
python script, and not the SWIG generation shell script. Someone
more familiar than me with shell scripts will need to fix them
to support this for Python 3 if desired.
llvm-svn: 252382
|
|
Summary:
This does a broad first pass on cleaning up a lot of the noise when
using pylint on these scripts. It mostly addresses issues of:
* Mixed tabs and spaces.
* Trailing whitespace.
* Semicolons where they aren't needed.
* Incorrect whitespace around () and [].
* Superfluous parentheses.
There will be subsequent patches with further changes that build
upon these.
Reviewers: zturner, domipheus
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14375
llvm-svn: 252244
|
|
llvm-svn: 249467
|
|
lldb.target
lldb.process
lldb.thread
lldb.frame
are initialized to at least contain empty lldb classes in case some python gets imported that uses them.
llvm-svn: 169750
|
|
llvm-svn: 167242
|
|
case for the SBModule.compile_unit_iter() API.
llvm-svn: 152952
|
|
llvm-svn: 144145
|
|
creating
a watchpoint for either the variable encapsulated by SBValue (Watch) or the pointee
encapsulated by SBValue (WatchPointee).
Removed SBFrame::WatchValue() and SBFrame::WatchLocation() API as a result of that.
Modified the watchpoint related test suite to reflect the change.
Plus replacing WatchpointLocation with Watchpoint throughout the code base.
There are still cleanups to be dome. This patch passes the whole test suite.
Check it in so that we aggressively catch regressions.
llvm-svn: 141925
|
|
llvm-svn: 141876
|
|
llvm-svn: 141033
|
|
llvm-svn: 140833
|
|
utility functions
from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in
the lldb module. And the symbol_iter() function becomes a method within the SBModule
called symbol_in_section_iter(). Example:
# Iterates the text section and prints each symbols within each sub-section.
for subsec in text_sec:
print INDENT + repr(subsec)
for sym in exe_module.symbol_in_section_iter(subsec):
print INDENT2 + repr(sym)
print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType())
might produce this following output:
[0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text
id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870)
symbol type: code
id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0)
symbol type: code
id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c)
symbol type: code
id = {0x00000023}, name = 'start', address = 0x0000000100001780
symbol type: code
[0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs
id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62)
symbol type: trampoline
id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68)
symbol type: trampoline
id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e)
symbol type: trampoline
id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74)
symbol type: trampoline
id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a)
symbol type: trampoline
id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80)
symbol type: trampoline
id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86)
symbol type: trampoline
id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c)
symbol type: trampoline
id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92)
symbol type: trampoline
id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98)
symbol type: trampoline
id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e)
symbol type: trampoline
id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4)
symbol type: trampoline
[0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper
[0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring
[0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info
[0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame
llvm-svn: 140830
|
|
Python interface.
Also add rich comparison methods (__eq__ and __ne__) for SBWatchpointLocation.
Modify TestWatchpointLocationIter.py to exercise the new APIs.
Add fuzz testings for the recently added SBTarget APIs related to watchpoint manipulations.
llvm-svn: 140633
|
|
SBTarget methods)
to the Python interface.
Implement yet another (threre're 3 now) iterator protocol for SBTarget: watchpoint_location_iter(),
to iterate on the available watchpoint locations. And add a print representation for
SBWatchpointLocation.
Exercise some of these Python API with TestWatchpointLocationIter.py.
llvm-svn: 140595
|
|
SBSection as well.
SBModule supports an additional SBSection iteration, besides the original SBSymbol iteration.
Add docstrings and implement the two SBSection iteration protocols.
llvm-svn: 140449
|
|
out early.
Add code to test case to create an evil linked list with:
task_evil -> task_2 -> task_3 -> task_evil ...
and to check that the linked list iterator only iterates 3 times.
llvm-svn: 137291
|
|
homogeneous linked list data structure
where an empty linked list is represented as a value object with a NULL value, instead of a special value
object which 'points' to NULL.
Also modifies the test case to comply.
rdar://problem/9933692
llvm-svn: 137289
|
|
Add the rich comparison methods (__eq__, __ne__) to SBType, too.
o lldbtest.py:
Add debug utility method TestBase.DebugSBType().
o test/python_api/type:
Add tests for exercising SBType/SBTypeList API, including the SBTarget.FindTypes(type_name)
API which returns a SBTypeList matching the type_name.
llvm-svn: 136975
|
|
This patch takes some time because the old Python constructor pattern was not a valid one,
and breaks with SBTypeList's __init__ signature. Oops.
llvm-svn: 136958
|
|
Fix the bug and add a test case.
llvm-svn: 136265
|
|
end of list test function as __eol_test__.
The simple example can be reduced to:
for t in task_head.linked_list_iter('next'):
print t
Modify the test program to exercise the API for both cases: supplying or not
supplying an end of list test function.
llvm-svn: 136144
|
|
too complex in the test case. We can just simply test that the SBValue object
is a valid object and it does not correspond to a null pointer in order to say
that EOL has not been reached.
Modify the test case and the lldb.py docstring to have a more compact test
function.
llvm-svn: 136123
|
|
end_of_list_test.
llvm-svn: 136016
|
|
for child in value:
# do something with the child value
and SBValue.linked_list_iter():
for task in task_head.linked_list_iter('next', eol_test):
# visit each item in the linked list
llvm-svn: 136015
|
|
to iterate through an SBValue instance by treating it as the head of a linked
list. API program must provide two args to the linked_list_iter() method:
the first being the child member name which points to the next item on the list
and the second being a Python function which an SBValue (for the next item) and
returns True if end of list is reached, otherwise it returns False.
For example, suppose we have the following sample program.
#include <stdio.h>
class Task {
public:
int id;
Task *next;
Task(int i, Task *n):
id(i),
next(n)
{}
};
int main (int argc, char const *argv[])
{
Task *task_head = new Task(-1, NULL);
Task *task1 = new Task(1, NULL);
Task *task2 = new Task(2, NULL);
Task *task3 = new Task(3, NULL); // Orphaned.
Task *task4 = new Task(4, NULL);
Task *task5 = new Task(5, NULL);
task_head->next = task1;
task1->next = task2;
task2->next = task4;
task4->next = task5;
int total = 0; // Break at this line
Task *t = task_head;
while (t != NULL) {
if (t->id >= 0)
++total;
t = t->next;
}
printf("We have a total number of %d tasks\n", total);
return 0;
}
The test program produces the following output while exercising the linked_list_iter() SBVAlue API:
task_head:
TypeName -> Task *
ByteSize -> 8
NumChildren -> 2
Value -> 0x0000000106400380
ValueType -> local_variable
Summary -> None
IsPointerType -> True
Location -> 0x00007fff65f06e60
(Task *) next = 0x0000000106400390
(int) id = 1
(Task *) next = 0x00000001064003a0
(Task *) next = 0x00000001064003a0
(int) id = 2
(Task *) next = 0x00000001064003c0
(Task *) next = 0x00000001064003c0
(int) id = 4
(Task *) next = 0x00000001064003d0
(Task *) next = 0x00000001064003d0
(int) id = 5
(Task *) next = 0x0000000000000000
llvm-svn: 135938
|
|
of the duty of having SWIG docstring features and multiline string literals
embedded within.
lldb.swig now %include .../SBTarget.i, instead of .../SBTarget.h. Will create
other interface files and transition them over.
Also update modify-python-lldb.py to better handle the trailing blank line right
before the ending '"""' Python docstring delimiter.
llvm-svn: 135355
|
|
incorporate the doxgen doc block of
SBValue::GetChildAtIndex(uint32_t idx,
lldb::DynamicValueType use_dynamic,
bool can_create_synthetic);
into the SBValue docstrings.
llvm-svn: 135295
|
|
Add logic to modify-python-lldb to correct swig's transformation of 'char **argv' and 'char **envp'
to 'char argv' and 'char envp' by morphing them into the 'list argv' and 'list envp' (as a list of
Python strings).
llvm-svn: 135114
|
|
definitions.
llvm-svn: 134775
|
|
*', to 'str', i.e., Python string.
llvm-svn: 134543
|
|
generated from the swig docstring features instead of blindly applying the
cleanup action for all input lines.
llvm-svn: 134368
|
|
Add post-processing step to remove the trailing blank lines from the docstrings of lldb.py.
llvm-svn: 134360
|
|
doxygen/c++-comment residues.
llvm-svn: 134326
|
|
take advantage of them. Update modify-python-lldb.py to remove some 'residues'
resulting from swigification.
llvm-svn: 134269
|
|
Previously the IsValid pattern matched only function signatures of
the form:
def IsValid(*args): ...
However under SWIG 1.3.40 on Linux the signature reads:
def IsValid(self): ...
The new pattern matches both signature types by matching only up to
the left paren.
llvm-svn: 132968
|