Age | Commit message (Collapse) | Author | Files | Lines |
|
sugar types (#149613)
The checks for the 'z' and 't' format specifiers added in the original
PR #143653 had some issues and were overly strict, causing some build
failures and were consequently reverted at
https://github.com/llvm/llvm-project/commit/4c85bf2fe8042c855c9dd5be4b02191e9d071ffd.
In the latest commit
https://github.com/llvm/llvm-project/pull/149613/commits/27c58629ec76a703fde9c0b99b170573170b4a7a,
I relaxed the checks for the 'z' and 't' format specifiers, so warnings
are now only issued when they are used with mismatched types.
The original intent of these checks was to diagnose code that assumes
the underlying type of `size_t` is `unsigned` or `unsigned long`, for
example:
```c
printf("%zu", 1ul); // Not portable, but not an error when size_t is unsigned long
```
However, it produced a significant number of false positives. This was
partly because Clang does not treat the `typedef` `size_t` and
`__size_t` as having a common "sugar" type, and partly because a large
amount of existing code either assumes `unsigned` (or `unsigned long`)
is `size_t`, or they define the equivalent of size_t in their own way
(such as
sanitizer_internal_defs.h).https://github.com/llvm/llvm-project/blob/2e67dcfdcd023df2f06e0823eeea23990ce41534/compiler-rt/lib/sanitizer_common/sanitizer_internal_defs.h#L203
|
|
sugar types instead of built-in types (#143653)"
This reverts commit c27e283cfbca2bd22f34592430e98ee76ed60ad8.
A builbot failure has been reported:
https://lab.llvm.org/buildbot/#/builders/186/builds/10819/steps/10/logs/stdio
I'm also getting a large number of warnings related to %zu and %zx.
|
|
types instead of built-in types (#143653)
Including the results of `sizeof`, `sizeof...`, `__datasizeof`,
`__alignof`, `_Alignof`, `alignof`, `_Countof`, `size_t` literals, and
signed `size_t` literals, the results of pointer-pointer subtraction and
checks for standard library functions (and their calls).
The goal is to enable clang and downstream tools such as clangd and
clang-tidy to provide more portable hints and diagnostics.
The previous discussion can be found at #136542.
This PR implements this feature by introducing a new subtype of `Type`
called `PredefinedSugarType`, which was considered appropriate in
discussions. I tried to keep `PredefinedSugarType` simple enough yet not
limited to `size_t` and `ptrdiff_t` so that it can be used for other
purposes. `PredefinedSugarType` wraps a canonical `Type` and provides a
name, conceptually similar to a compiler internal `TypedefType` but
without depending on a `TypedefDecl` or a source file.
Additionally, checks for the `z` and `t` format specifiers in format
strings for `scanf` and `printf` were added. It will precisely match
expressions using `typedef`s or built-in expressions.
The affected tests indicates that it works very well.
Several code require that `SizeType` is canonical, so I kept `SizeType`
to its canonical form.
The failed tests in CI are allowed to fail. See the
[comment](https://github.com/llvm/llvm-project/pull/135386#issuecomment-3049426611)
in another PR #135386.
|
|
Add `NamespaceBaseDecl` as common base class of `NamespaceDecl` and
`NamespaceAliasDecl`. This simplifies `NestedNameSpecifier` a bit.
Co-authored-by: Matheus Izvekov <mizvekov@gmail.com>
|
|
SourceLocation (#145711)
Introduce a type alias for the commonly used `std::pair<FileID,
unsigned>` to improve code readability, and make it easier for future
updates (64-bit source locations).
|
|
[Discourse
link](https://discourse.llvm.org/t/a-small-proposal-for-extraction-of-inline-assembly-block-information/86658)
We strive for exposing such information using existing stable ABIs. In
doing so, queries are limited to what the original source holds or the
LLVM IR `asm` block would expose in connection with attributes that the
queries are concerned.
These APIs opens new opportunities for `rust-bindgen` to translate
inline assemblies in reasonably cases into Rust inline assembly blocks,
which would further aid better interoperability with other existing
code.
---------
Signed-off-by: Xiangfei Ding <dingxiangfei2009@protonmail.ch>
|
|
|
|
This implements the design proposed by [Representing SpirvType in
Clang's Type System](https://github.com/llvm/wg-hlsl/pull/181). It
creates `HLSLInlineSpirvType` as a new `Type` subclass, and
`__hlsl_spirv_type` as a new builtin type template to create such a
type.
This new type is lowered to the `spirv.Type` target extension type, as
described in [Target Extension Types for Inline SPIR-V and Decorated
Types](https://github.com/llvm/wg-hlsl/blob/main/proposals/0017-inline-spirv-and-decorated-types.md).
|
|
(#139584)"
This reverts commit e2a885537f11f8d9ced1c80c2c90069ab5adeb1d. Build failures were fixed right away and reverting the original commit without the fixes breaks the build again.
|
|
(#139584)"
This reverts commit 9e306ad4600c4d3392c194a8be88919ee758425c.
Multiple builtbot failures have been reported:
https://github.com/llvm/llvm-project/pull/139584
|
|
The `DiagnosticOptions` class is currently intrusively
reference-counted, which makes reasoning about its lifetime very
difficult in some cases. For example, `CompilerInvocation` owns the
`DiagnosticOptions` instance (wrapped in `llvm::IntrusiveRefCntPtr`) and
only exposes an accessor returning `DiagnosticOptions &`. One would
think this gives `CompilerInvocation` exclusive ownership of the object,
but that's not the case:
```c++
void shareOwnership(CompilerInvocation &CI) {
llvm::IntrusiveRefCntPtr<DiagnosticOptions> CoOwner = &CI.getDiagnosticOptions();
// ...
}
```
This is a perfectly valid pattern that is being actually used in the
codebase.
I would like to ensure the ownership of `DiagnosticOptions` by
`CompilerInvocation` is guaranteed to be exclusive. This can be
leveraged for a copy-on-write optimization later on. This PR changes
usages of `DiagnosticOptions` across `clang`, `clang-tools-extra` and
`lldb` to not be intrusively reference-counted.
|
|
|
|
- Defines a new declaration node `HLSLRootSignature` in `DeclNodes.td`
that will consist of a `TrailingObjects` of the in-memory construction
of the root signature, namely an array of `hlsl::rootsig::RootElement`s
- Defines a new clang attr `RootSignature` which simply holds an
identifier to a corresponding root signature declaration as above
- Integrate the `HLSLRootSignatureParser` to construct the decl node in
`ParseMicrosoftAttributes` and then attach the parsed attr with an
identifier to the entry point function declaration.
- Defines the various required declaration methods
- Add testing that the declaration and reference attr are created
correctly, and some syntactical error tests.
It was previously proposed that we could have the root elements
reference be stored directly as an additional member of the attribute
and to not have a separate root signature decl. In contrast, by defining
them separately as this change proposes, we will allow a unique root
signature to have its own declaration in the AST tree. This allows us to
only construct a single root signature for all duplicate root signature
attributes. Having it located directly as a declaration might also prove
advantageous when we consider root signature libraries.
Resolves https://github.com/llvm/llvm-project/issues/119011
|
|
|
|
And adapt the existing code to account for the comments made when
introducing the duplicate API.
Note that this introduces a retro-incompatibility with LLVM 19.
cc @sebastianpoeplau
|
|
|
|
This PR makes it so that `CompilerInvocation` is the sole owner of the
`HeaderSearchOptions` instance.
|
|
Add tests for `clang_File_isEqual` (on-disk and in-memory)
|
|
|
|
This was added in OpenACC PR #511 in the 3.4 branch. From an AST/Sema
perspective this is pretty trivial as the infrastructure for 'if'
already exists, however the atomic construct needed to be taught to take
clauses. This patch does that and adds some testing to do so.
|
|
|
|
Initial parsing/sema support for self maps in map and requirement clause
[Sections 7.9.6 and 10.5.1.6 in OpenMP 6.0 spec]
|
|
The 'bind' clause allows the renaming of a function during code
generation. There are a few rules about when this can/cannot happen,
and it takes either a string or identifier (previously mis-implemetned
as ID-expression) argument.
Note there are additional rules to this in the implicit-function routine
case, but that isn't implemented in this patch, as implicit-function
routine is not yet implemented either.
|
|
'nohost' is only valid on routine, and states that the compiler
shouldn't compile this routine for the host. It has no arguments, so no
checking is required besides putting it in the AST.
|
|
The 'routine' construct has two forms, one which takes the name of a
function that it applies to, and another where it implicitly figures it
out based on the next declaration. This patch implements the former with
the required restrictions on the name and the function-static-variables
as specified.
What has not been implemented is any clauses for this, any of the A.3.4
warnings, or the other form.
|
|
This statement level construct takes no clauses and has no associated
statement, and simply labels a number of array elements as valid for
caching. The implementation here is pretty simple, but it is a touch of
a special case for parsing, so the parsing code reflects that.
|
|
The 'declare' construct is the first of two 'declaration' level
constructs, so it is legal in any place a declaration is, including as a
statement, which this accomplishes by wrapping it in a DeclStmt. All
clauses on this have a 'same scope' requirement, which this enforces as
declaration context instead, which makes it possible to implement these
as a template.
The 'link' and 'device_resident' clauses are also added, which have some
similar/small restrictions, but are otherwise pretty rote.
This patch implements all of the above.
|
|
This patch was reviewed and approved here:
https://github.com/llvm/llvm-project/pull/119891
However it has been reverted here:
https://github.com/alejandro-alvarez-sonarsource/llvm-project/commit/083df25dc256154cccbc0e127d79fbac4d0583c5
due to a build issue here:
https://lab.llvm.org/buildbot/#/builders/51/builds/10694
This patch is reintroducing the support.
|
|
This reverts commit 070f84ebc89b11df616a83a56df9ac56efbab783.
Buildbot failure:
https://lab.llvm.org/buildbot/#/builders/51/builds/10694
|
|
Implement basic parsing and semantic support for `#pragma omp stripe`
constuct introduced in
https://www.openmp.org/wp-content/uploads/[OpenMP-API-Specification-6-0.pdf](https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-6-0.pdf),
section 11.7.
|
|
(#125933)
Add initial parsing/sema support for new assumption clause so clause can
be specified. For now, it's ignored, just like the others.
Added support for 'no_openmp_construct' to release notes.
Testing
- Updated appropriate LIT tests.
- Testing: check-all
|
|
Note that PointerUnion::dyn_cast has been soft deprecated in
PointerUnion.h:
// FIXME: Replace the uses of is(), get() and dyn_cast() with
// isa<T>, cast<T> and the llvm::dyn_cast<T>
Literal migration would result in dyn_cast_if_present (see the
definition of PointerUnion::dyn_cast), but this patch uses dyn_cast
because we expect Storage to be nonnull. Note that if Storage were
null, dereferencing Ovl would trigger a segfault.
|
|
The atomic construct is a particularly complicated one. The directive
itself is pretty simple, it has 5 options for the 'atomic-clause'.
However, the associated statement is fairly complicated.
'read' accepts:
v = x;
'write' accepts:
x = expr;
'update' (or no clause) accepts:
x++;
x--;
++x;
--x;
x binop= expr;
x = x binop expr;
x = expr binop x;
'capture' accepts either a compound statement, or:
v = x++;
v = x--;
v = ++x;
v = --x;
v = x binop= expr;
v = x = x binop expr;
v = x = expr binop x;
IF 'capture' has a compound statement, it accepts:
{v = x; x binop= expr; }
{x binop= expr; v = x; }
{v = x; x = x binop expr; }
{v = x; x = expr binop x; }
{x = x binop expr ;v = x; }
{x = expr binop x; v = x; }
{v = x; x = expr; }
{v = x; x++; }
{v = x; ++x; }
{x++; v = x; }
{++x; v = x; }
{v = x; x--; }
{v = x; --x; }
{x--; v = x; }
{--x; v = x; }
While these are all quite complicated, there is a significant amount
of similarity between the 'capture' and 'update' lists, so this patch
reuses a lot of the same functions.
This patch implements the entirety of 'atomic', creating a new Sema file
for the sema for it, as it is fairly sizable.
|
|
Note that PointerUnion::dyn_cast has been soft deprecated in
PointerUnion.h:
// FIXME: Replace the uses of is(), get() and dyn_cast() with
// isa<T>, cast<T> and the llvm::dyn_cast<T>
Literal migration would result in dyn_cast_if_present (see the
definition of PointerUnion::dyn_cast), but this patch uses dyn_cast
because we expect Storage to be nonnull.
|
|
A SYCL kernel entry point function is a non-member function or a static
member function declared with the `sycl_kernel_entry_point` attribute.
Such functions define a pattern for an offload kernel entry point
function to be generated to enable execution of a SYCL kernel on a
device. A SYCL library implementation orchestrates the invocation of
these functions with corresponding SYCL kernel arguments in response to
calls to SYCL kernel invocation functions specified by the SYCL 2020
specification.
The offload kernel entry point function (sometimes referred to as the
SYCL kernel caller function) is generated from the SYCL kernel entry
point function by a transformation of the function parameters followed
by a transformation of the function body to replace references to the
original parameters with references to the transformed ones. Exactly how
parameters are transformed will be explained in a future change that
implements non-trivial transformations. For now, it suffices to state
that a given parameter of the SYCL kernel entry point function may be
transformed to multiple parameters of the offload kernel entry point as
needed to satisfy offload kernel argument passing requirements.
Parameters that are decomposed in this way are reconstituted as local
variables in the body of the generated offload kernel entry point
function.
For example, given the following SYCL kernel entry point function
definition:
```
template<typename KernelNameType, typename KernelType>
[[clang::sycl_kernel_entry_point(KernelNameType)]]
void sycl_kernel_entry_point(KernelType kernel) {
kernel();
}
```
and the following call:
```
struct Kernel {
int dm1;
int dm2;
void operator()() const;
};
Kernel k;
sycl_kernel_entry_point<class kernel_name>(k);
```
the corresponding offload kernel entry point function that is generated
might look as follows (assuming `Kernel` is a type that requires
decomposition):
```
void offload_kernel_entry_point_for_kernel_name(int dm1, int dm2) {
Kernel kernel{dm1, dm2};
kernel();
}
```
Other details of the generated offload kernel entry point function, such
as its name and calling convention, are implementation details that need
not be reflected in the AST and may differ across target devices. For
that reason, only the transformation described above is represented in
the AST; other details will be filled in during code generation.
These transformations are represented using new AST nodes introduced
with this change. `OutlinedFunctionDecl` holds a sequence of
`ImplicitParamDecl` nodes and a sequence of statement nodes that
correspond to the transformed parameters and function body.
`SYCLKernelCallStmt` wraps the original function body and associates it
with an `OutlinedFunctionDecl` instance. For the example above, the AST
generated for the `sycl_kernel_entry_point<kernel_name>` specialization
would look as follows:
```
FunctionDecl 'sycl_kernel_entry_point<kernel_name>(Kernel)'
TemplateArgument type 'kernel_name'
TemplateArgument type 'Kernel'
ParmVarDecl kernel 'Kernel'
SYCLKernelCallStmt
CompoundStmt
<original statements>
OutlinedFunctionDecl
ImplicitParamDecl 'dm1' 'int'
ImplicitParamDecl 'dm2' 'int'
CompoundStmt
VarDecl 'kernel' 'Kernel'
<initialization of 'kernel' with 'dm1' and 'dm2'>
<transformed statements with redirected references of 'kernel'>
```
Any ODR-use of the SYCL kernel entry point function will (with future
changes) suffice for the offload kernel entry point to be emitted. An
actual call to the SYCL kernel entry point function will result in a
call to the function. However, evaluation of a `SYCLKernelCallStmt`
statement is a no-op, so such calls will have no effect other than to
trigger emission of the offload kernel entry point.
Additionally, as a related change inspired by code review feedback,
these changes disallow use of the `sycl_kernel_entry_point` attribute
with functions defined with a _function-try-block_. The SYCL 2020
specification prohibits the use of C++ exceptions in device functions.
Even if exceptions were not prohibited, it is unclear what the semantics
would be for an exception that escapes the SYCL kernel entry point
function; the boundary between host and device code could be an implicit
noexcept boundary that results in program termination if violated, or
the exception could perhaps be propagated to host code via the SYCL
library. Pending support for C++ exceptions in device code and clear
semantics for handling them at the host-device boundary, this change
makes use of the `sycl_kernel_entry_point` attribute with a function
defined with a _function-try-block_ an error.
|
|
These two clauses just take a 'var-list' and specify where the variables
should be copied from/to. This patch implements the AST nodes for them
and ensures they properly take a var-list.
|
|
The 'self' clause is an unfortunately difficult one, as it has a
significantly different meaning between 'update' and the other
constructs. This patch introduces a way for the 'self' clause to work
as both. I considered making this two separate AST nodes (one for
'self' on 'update' and one for the others), however this makes the
automated macros/etc for supporting a clause break.
Instead, 'self' has the ability to act as either a condition or as a
var-list clause. As this is the only one of its kind, it is implemented
all within it. If in the future we have more that work like this, we
should consider rewriting a lot of the macros that we use to make
clauses work, and make them separate ast nodes.
|
|
This executable construct has a larger list of clauses than some of the
others, plus has some additional restrictions. This patch implements
the AST node, plus the 'cannot be the body of a if, while, do, switch,
or label' statement restriction. Future patches will handle the
rest of the restrictions, which are based on clauses.
|
|
A fairly simple one, only valid on the 'set' construct, this clause
takes an int expression. Most of the work was already done as a part of
parsing, so this patch ends up being a lot of infrastructure.
|
|
The 'set' construct is another fairly simple one, it doesn't have an
associated statement and only a handful of allowed clauses. This patch
implements it and all the rules for it, allowing 3 of its for clauses.
The only exception is default_async, which will be implemented in a
future patch, because it isn't just being enabled, it needs a complete
new implementation.
|
|
This is a very simple sema implementation, and just required AST node
plus the existing diagnostics. This patch adds tests and adds the AST
node required, plus enables it for 'init' and 'shutdown' (only!)
|
|
These two constructs are very simple and similar, and only support 3
different clauses, two of which are already implemented. This patch
adds AST nodes for both constructs, and leaves the device_num clause
unimplemented, but enables the other two.
|
|
The arguments to this are the same as for the 'wait' clause, so this
reuses all of that infrastructure. So all this has to do is support a
pair of clauses that are already implemented (if and async), plus create
an AST node. This patch does so, and adds proper testing.
|
|
This is a clause that is only valid on 'host_data' constructs, and
identifies variables which it should use the current device address.
From a Sema perspective, the only thing novel here is mild changes to
how ActOnVar works for this clause, else this is very much like the rest
of the 'var-list' clauses.
|
|
'delete' is another clause that has very little compile-time
implication, but needs a full AST that takes a var list. This patch
ipmlements it fully, plus adds sufficient test coverage.
|
|
This is another new clause specific to 'exit data' that takes a pointer
argument. This patch implements this the same way we do a few other
clauses (like attach) that have the same restrictions.
|
|
The 'if_present' clause controls the replacement of addresses in the
var-list in current device memory. This clause can only go on
'host_device'. From a Sema perspective, there isn't anything to do
beyond add this to AST and pass it on.
|
|
This is a very simple clause as far as sema is concerned. It is only
valid on 'exit data', and doesn't have any rules involving it, so it is
simply applied and passed onto the MLIR.
|
|
These constructs are all very similar and closely related, so this patch
creates the AST nodes for them, serialization, printing/etc.
Additionally the restrictions are all added as tests/todos in the tests,
as those will have to be implemented once we get those clauses implemented.
|
|
Note that PointerUnion::{is,get} have been soft deprecated in
PointerUnion.h:
// FIXME: Replace the uses of is(), get() and dyn_cast() with
// isa<T>, cast<T> and the llvm::dyn_cast<T>
I'm not touching PointerUnion::dyn_cast for now because it's a bit
complicated; we could blindly migrate it to dyn_cast_if_present, but
we should probably use dyn_cast when the operand is known to be
non-null.
|