Age | Commit message (Collapse) | Author | Files | Lines |
|
C++23 (#145164)
C++23 mandates that temporaries used in range-based for loops are
lifetime-extended
to cover the full loop. This patch adds a check for loop variables and
compiler-
generated `__range` bindings to apply the correct extension.
Includes test cases based on examples from CWG900/P2644R1.
Fixes https://github.com/llvm/llvm-project/issues/109793
|
|
This patch stops storing a source range in `CXXOperatorCallExpr` and
keeps only the begin location.
This change allows us to retain the optimization #141058 when switching
to 64-bit source locations.
Performance results:
https://llvm-compile-time-tracker.com/compare.php?from=0588e8188c647460b641b09467fe6b13a8d510d5&to=5958f83476a8b8ba97936f262396d3ff98fb1662&stat=instructions:u
|
|
All deserialized VarDecl initializers are EvaluatedStmt, but not all
EvaluatedStmt initializers are from a PCH. Calling
`VarDecl::hasInitWithSideEffects` can trigger constant evaluation, but
it's hard to know ahead of time whether that will trigger
deserialization - even if the initializer is fully deserialized, it may
contain a call to a constructor whose body is not deserialized. By
caching the result of `VarDecl::hasInitWithSideEffects` and populating
that cache during deserialization we can guarantee that calling it won't
trigger deserialization regardless of the state of the initializer.
This also reduces memory usage by removing the `InitSideEffectVars` set
in `ASTReader`.
rdar://154717930
|
|
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
|
|
ArrayRef(std::nullopt) just got deprecated. This patch does the same
to MutableArrayRef(std::nullopt). Since there are only a couple of
uses, this patch does migration and deprecation at the same time.
|
|
(#145447)
This reverts commit 329ae86 and adds an early exit for EvaluateInPlace when the expression's type is null.
|
|
(#145407)
Reverts llvm/llvm-project#143739 because it triggers an assert:
```
Assertion failed: (!isNull() && "Cannot retrieve a NULL type pointer"), function getCommonPtr, file Type.h, line 952.
```
|
|
Calling `DeclMustBeEmitted` should not lead to more deserialization, as
it may occur before previous deserialization has finished.
When passed a `VarDecl` with an initializer however, `DeclMustBeEmitted`
needs to know whether that initializer contains side effects. When the
`VarDecl` is deserialized but the initializer is not, this triggers
deserialization of the initializer. To avoid this we add a bit to the
serialization format for `VarDecl`s, indicating whether its initializer
contains side effects or not, so that the `ASTReader` can query this
information directly without deserializing the initializer.
rdar://153085264
|
|
|
|
Close https://github.com/llvm/llvm-project/issues/119947
As discussed in the above thread, we shouldn't write specializations
with local args in reduced BMI. Since users can't find such
specializations any way.
|
|
I previously failed to realize this feature existed...
Fixes #137459
Fixes #143242
|
|
same module. (#142467)
This is a follow-up fix to
https://github.com/llvm/llvm-project/pull/109167.
Previously, we stored a mapping between the enclosing function and the
lambda class declaration. When loading the enclosing function, we also
loaded the corresponding lambda class declaration. However, loading the
lambda class declaration does not guarantee that its call operator (a
`CXXMethodDecl`) is loaded as well.
As a result, if the lambda call operator is later loaded from a
different module, we can end up with a `DeclRefExpr` that refers to a
`VarDecl` from a different module — leading to inconsistencies.
To fix this, we should ensure the lambda call operator itself is loaded.
Fixes #141582
|
|
|
|
When serializing and deserializing a FunctionDecl we don't recover
whether or not the decl was a type aware allocator or destroying delete,
because in the final PR that information was placed in a side table in
ASTContext.
In principle it should be possible to re-do the semantic checks to
determine what these flags should be when deserializing, but it seems
like the most robust path is simply recording the flags directly in the
serialized AST.
|
|
std::optional<unsigned> (#134142)
This introduces a new class 'UnsignedOrNone', which models a lite
version of `std::optional<unsigned>`, but has the same size as
'unsigned'.
This replaces most uses of `std::optional<unsigned>`, and similar
schemes utilizing 'int' and '-1' as sentinel.
Besides the smaller size advantage, this is simpler to serialize, as its
internal representation is a single unsigned int as well.
|
|
|
|
This reverts an earlier attempt
(adb0d8ddceb143749c519d14b8b31b481071da77 and
50e5411e4247421fd606f0a206682fcdf0303ae3) to support these expansions,
which was limited to type arguments and which subverted the purpose
of SubstTemplateTypeParmType.
This propagates the ArgumentPackSubstitutionIndex along with the
AssociatedConstraint, so that the pack expansion works, without
needing any new transforms or otherwise any changes to the template
instantiation process.
This keeps the tests from the reverted commits, and adds a few more
showing the new solution also works for NTTPs.
Fixes https://github.com/llvm/llvm-project/issues/131798
|
|
https://github.com/llvm/llvm-project/pull/102040/files#diff-125f472e690aa3d973bc42aa3c5d580226c5c47661551aca2889f960681aa64dR2477
added 1 bit to `RecordDecl`'s serialization format, but did not
increment its abbreviation size.
This can lead to rare cases where a record may overflow if the
`RecordDecl`'s `getArgPassingRestrictions()` returns something bigger
than 1 (see
[here](https://github.com/llvm/llvm-project/blob/b3f01a6aa45b00240cec1c64286b85d7ba87e2af/clang/lib/Serialization/ASTWriterDecl.cpp#L688)).
rdar://143763558
|
|
llvm#132794) (#133077)
When retrieving the ExplicitSpecifier from a CXXConstructorDecl, one of
its canonical declarations is returned. To correctly write the
declaration record the ExplicitSpecifier of the current declaration must
be used.
Failing to do so results in a crash during deserialization.
|
|
There are two piece of codes in ASTWriterDecl to decide whether or not
we should generate a function or a variable in current module unit (or
PCH with object file extension, which is rarely used). One is in
Visit*Decl and One is in `CanElideDef`. Since they are similar it should
be better to merge them.
This was meant to be a NFC patch. But it seems it helped me to find an
existing bug.
|
|
It is still better to elide the declaration if possible. To overcome the
false positive undefinedButUsed diagnostic, it seems better to not add
declaration from other units to the set actually.
|
|
The 'routine' construct has two forms, one which takes the name of a
function that it applies to, and another where it implicitly figures it
out based on the next declaration. This patch implements the former with
the required restrictions on the name and the function-static-variables
as specified.
What has not been implemented is any clauses for this, any of the A.3.4
warnings, or the other form.
|
|
See the attached test for example.
|
|
The 'declare' construct is the first of two 'declaration' level
constructs, so it is legal in any place a declaration is, including as a
statement, which this accomplishes by wrapping it in a DeclStmt. All
clauses on this have a 'same scope' requirement, which this enforces as
declaration context instead, which makes it possible to implement these
as a template.
The 'link' and 'device_resident' clauses are also added, which have some
similar/small restrictions, but are otherwise pretty rote.
This patch implements all of the above.
|
|
...when there are invalid constraints.
When attaching a `TypeConstraint`, in case of error, the trailing
pointer that is supposed to point to the constraint is left
uninitialized.
Sometimes the uninitialized value will be a `nullptr`, but at other
times it will not. If we traverse the AST (for instance, dumping it, or
when writing the BMI), we may get a crash depending on the value that
was left. The serialization may also contain a bogus value.
In this commit, we always initialize the `PlaceholderTypeConstraint`
with `nullptr`, to avoid accessing this uninitialized memory.
This does not affect only modules, but it causes a segfault more
consistently when they are involved.
The test case was reduced from `mp-units`.
---------
Co-authored-by: Erich Keane <ekeane@nvidia.com>
|
|
|
|
This rename follows the proposed wording in P3310R5, which introduces
the term 'strict pack match' to refer to the same thing.
|
|
Class templates might be only instantiated when they are required to be
complete, but checking the template args against the primary template is
immediate.
This result is cached so that later when the class is instantiated,
checking against the primary template is not repeated.
The 'MatchedPackOnParmToNonPackOnArg' flag is also produced upon
checking against the primary template, so it needs to be cached in the
specialziation as well.
This fixes a bug which has not been in any release, so there are no
release notes.
Fixes #125290
|
|
Reverts llvm/llvm-project#125372 due to lldb builds failing:
https://lab.llvm.org/buildbot/#/builders/59/builds/12223
We need to decide how to update LLDB's code.
|
|
|
|
This reverts commit 07a0e2be86f33beb6d519a3d466b95c2257e93cb.
This change broke compiling Qt; see
https://github.com/llvm/llvm-project/pull/112241 for details.
|
|
This fixes instantiation of definition for friend function templates,
when the declaration found and the one containing the definition have
different template contexts.
In these cases, the the function declaration corresponding to the
definition is not available; it may not even be instantiated at all.
So this patch adds a bit which tracks which function template
declaration was instantiated from the member template. It's used to find
which primary template serves as a context for the purpose of
obtainining the template arguments needed to instantiate the definition.
Fixes #55509
Relanding patch, with no changes, after it was reverted due to revert of
commit this patch depended on.
|
|
(#123875)
For deduction guides generated from alias template CTAD, store the
deduction guide they were originated from. The source kind is also
maintained for future expansion in CTAD from inherited constructors.
This tracking is required to determine whether an alias template already
has a deduction guide corresponding to some deduction guide on the
original template, in order to support deduction guides for the alias
from deduction guides declared after the initial usage.
|
|
Summary:
This PR fixes bugreport
https://github.com/llvm/llvm-project/issues/122493 The root problem is
the same as before lambda function and DeclRefExpr references a variable
that does not belong to the same module as the enclosing function body.
Therefore iteration over the function body doesn’t visit the VarDecl.
Before this change RelatedDeclsMap was created only for canonical decl
but in reality it has to be done for the definition of the function that
does not always match the canonical decl.
Test Plan: check-clang
|
|
A SYCL kernel entry point function is a non-member function or a static
member function declared with the `sycl_kernel_entry_point` attribute.
Such functions define a pattern for an offload kernel entry point
function to be generated to enable execution of a SYCL kernel on a
device. A SYCL library implementation orchestrates the invocation of
these functions with corresponding SYCL kernel arguments in response to
calls to SYCL kernel invocation functions specified by the SYCL 2020
specification.
The offload kernel entry point function (sometimes referred to as the
SYCL kernel caller function) is generated from the SYCL kernel entry
point function by a transformation of the function parameters followed
by a transformation of the function body to replace references to the
original parameters with references to the transformed ones. Exactly how
parameters are transformed will be explained in a future change that
implements non-trivial transformations. For now, it suffices to state
that a given parameter of the SYCL kernel entry point function may be
transformed to multiple parameters of the offload kernel entry point as
needed to satisfy offload kernel argument passing requirements.
Parameters that are decomposed in this way are reconstituted as local
variables in the body of the generated offload kernel entry point
function.
For example, given the following SYCL kernel entry point function
definition:
```
template<typename KernelNameType, typename KernelType>
[[clang::sycl_kernel_entry_point(KernelNameType)]]
void sycl_kernel_entry_point(KernelType kernel) {
kernel();
}
```
and the following call:
```
struct Kernel {
int dm1;
int dm2;
void operator()() const;
};
Kernel k;
sycl_kernel_entry_point<class kernel_name>(k);
```
the corresponding offload kernel entry point function that is generated
might look as follows (assuming `Kernel` is a type that requires
decomposition):
```
void offload_kernel_entry_point_for_kernel_name(int dm1, int dm2) {
Kernel kernel{dm1, dm2};
kernel();
}
```
Other details of the generated offload kernel entry point function, such
as its name and calling convention, are implementation details that need
not be reflected in the AST and may differ across target devices. For
that reason, only the transformation described above is represented in
the AST; other details will be filled in during code generation.
These transformations are represented using new AST nodes introduced
with this change. `OutlinedFunctionDecl` holds a sequence of
`ImplicitParamDecl` nodes and a sequence of statement nodes that
correspond to the transformed parameters and function body.
`SYCLKernelCallStmt` wraps the original function body and associates it
with an `OutlinedFunctionDecl` instance. For the example above, the AST
generated for the `sycl_kernel_entry_point<kernel_name>` specialization
would look as follows:
```
FunctionDecl 'sycl_kernel_entry_point<kernel_name>(Kernel)'
TemplateArgument type 'kernel_name'
TemplateArgument type 'Kernel'
ParmVarDecl kernel 'Kernel'
SYCLKernelCallStmt
CompoundStmt
<original statements>
OutlinedFunctionDecl
ImplicitParamDecl 'dm1' 'int'
ImplicitParamDecl 'dm2' 'int'
CompoundStmt
VarDecl 'kernel' 'Kernel'
<initialization of 'kernel' with 'dm1' and 'dm2'>
<transformed statements with redirected references of 'kernel'>
```
Any ODR-use of the SYCL kernel entry point function will (with future
changes) suffice for the offload kernel entry point to be emitted. An
actual call to the SYCL kernel entry point function will result in a
call to the function. However, evaluation of a `SYCLKernelCallStmt`
statement is a no-op, so such calls will have no effect other than to
trigger emission of the offload kernel entry point.
Additionally, as a related change inspired by code review feedback,
these changes disallow use of the `sycl_kernel_entry_point` attribute
with functions defined with a _function-try-block_. The SYCL 2020
specification prohibits the use of C++ exceptions in device functions.
Even if exceptions were not prohibited, it is unclear what the semantics
would be for an exception that escapes the SYCL kernel entry point
function; the boundary between host and device code could be an implicit
noexcept boundary that results in program termination if violated, or
the exception could perhaps be propagated to host code via the SYCL
library. Pending support for C++ exceptions in device code and clear
semantics for handling them at the host-device boundary, this change
makes use of the `sycl_kernel_entry_point` attribute with a function
defined with a _function-try-block_ an error.
|
|
(#123059)
Close https://github.com/llvm/llvm-project/issues/61427
And this is also helpful to implement
https://github.com/llvm/llvm-project/issues/112294 partially.
The implementation strategy mimics
https://github.com/llvm/llvm-project/pull/122887. This patch split the
internal declarations from the general lookup table so that other TU
can't find the internal declarations.
|
|
Close https://github.com/llvm/llvm-project/issues/90154
This patch is also an optimization to the lookup process to utilize the
information provided by `export` keyword.
Previously, in the lookup process, the `export` keyword only takes part
in the check part, it doesn't get involved in the lookup process. That
said, previously, in a name lookup for 'name', we would load all of
declarations with the name 'name' and check if these declarations are
valid or not. It works well. But it is inefficient since it may load
declarations that may not be wanted.
Note that this patch actually did a trick in the lookup process instead
of bring module information to DeclarationName or considering module
information when deciding if two declarations are the same. So it may
not be a surprise to me if there are missing cases. But it is not a
regression. It should be already the case. Issue reports are welcomed.
In this patch, I tried to split the big lookup table into a lookup table
as before and a module local lookup table, which takes a combination of
the ID of the DeclContext and hash value of the primary module name as
the key. And refactored `DeclContext::lookup()` method to take the
module information. So that a lookup in a DeclContext won't load
declarations that are local to **other** modules.
And also I think it is already beneficial to split the big lookup table
since it may reduce the conflicts during lookups in the hash table.
BTW, this patch introduced a **regression** for a reachability rule in
C++20 but it was false-negative. See
'clang/test/CXX/module/module.interface/p7.cpp' for details.
This patch is not expected to introduce any other
regressions for non-c++20-modules users since the module local lookup
table should be empty for them.
|
|
This reverts commit 7201cae106260aeb3e9bbbb7d5291ff30f05076a.
|
|
Close https://github.com/llvm/llvm-project/issues/90154
This patch is also an optimization to the lookup process to utilize the
information provided by `export` keyword.
Previously, in the lookup process, the `export` keyword only takes part
in the check part, it doesn't get involved in the lookup process. That
said, previously, in a name lookup for 'name', we would load all of
declarations with the name 'name' and check if these declarations are
valid or not. It works well. But it is inefficient since it may load
declarations that may not be wanted.
Note that this patch actually did a trick in the lookup process instead
of bring module information to DeclarationName or considering module
information when deciding if two declarations are the same. So it may
not be a surprise to me if there are missing cases. But it is not a
regression. It should be already the case. Issue reports are welcomed.
In this patch, I tried to split the big lookup table into a lookup table
as before and a module local lookup table, which takes a combination of
the ID of the DeclContext and hash value of the primary module name as
the key. And refactored `DeclContext::lookup()` method to take the
module information. So that a lookup in a DeclContext won't load
declarations that are local to **other** modules.
And also I think it is already beneficial to split the big lookup table
since it may reduce the conflicts during lookups in the hash table.
BTW, this patch introduced a **regression** for a reachability rule in
C++20 but it was false-negative. See
'clang/test/CXX/module/module.interface/p7.cpp' for details.
This patch is not expected to introduce any other
regressions for non-c++20-modules users since the module local lookup
table should be empty for them.
---
On the API side, this patch unfortunately add a maybe-confusing argument
`Module *NamedModule` to
`ExternalASTSource::FindExternalVisibleDeclsByName()`. People may think
we can get the information from the first argument `const DeclContext
*DC`. But sadly there are declarations (e.g., namespace) can appear in
multiple different modules as a single declaration. So we have to add
additional information to indicate this.
|
|
This is a new Clang-specific attribute to ensure that field
initializations are performed explicitly.
For example, if we have
```
struct B {
[[clang::explicit]] int f1;
};
```
then the diagnostic would trigger if we do `B b{};`:
```
field 'f1' is left uninitialized, but was marked as requiring initialization
```
This prevents callers from accidentally forgetting to initialize fields,
particularly when new fields are added to the class.
|
|
After 0dedd6fe1 and 03229e7c0, invalid concept declarations might lack
expressions for evaluation and normalization. This could make it crash
in certain scenarios, apart from the one of evaluation concepts showed
in 03229e7c0, there's also an issue when checking specializations where
the normalization also relies on a non-null expression.
This patch prevents that by avoiding building up a type constraint in
such situations, thereafter the template parameter wouldn't have a
concept specialization of a null expression.
With this patch, the assumption in ASTWriterDecl is no longer valid.
Namely, HasConstraint and TypeConstraintInitialized must now represent
different meanings for both source fidelity and semantic requirements.
Fixes https://github.com/llvm/llvm-project/issues/115004
Fixes https://github.com/llvm/llvm-project/issues/121980
|
|
decl (#111992)
Summary:
Fix crash from reproducer provided in
https://github.com/llvm/llvm-project/pull/109167#issuecomment-2405289565
Also fix issues with merged inline friend functions merged during deserialization.
Test Plan: check-clang
|
|
Reland https://github.com/llvm/llvm-project/pull/83237
---
(Original comments)
Currently all the specializations of a template (including
instantiation, specialization and partial specializations) will be
loaded at once if we want to instantiate another instance for the
template, or find instantiation for the template, or just want to
complete the redecl chain.
This means basically we need to load every specializations for the
template once the template declaration got loaded. This is bad since
when we load a specialization, we need to load all of its template
arguments. Then we have to deserialize a lot of unnecessary
declarations.
For example,
```
// M.cppm
export module M;
export template <class T>
class A {};
export class ShouldNotBeLoaded {};
export class Temp {
A<ShouldNotBeLoaded> AS;
};
// use.cpp
import M;
A<int> a;
```
We have a specialization ` A<ShouldNotBeLoaded>` in `M.cppm` and we
instantiate the template `A` in `use.cpp`. Then we will deserialize
`ShouldNotBeLoaded` surprisingly when compiling `use.cpp`. And this
patch tries to avoid that.
Given that the templates are heavily used in C++, this is a pain point
for the performance.
This patch adds MultiOnDiskHashTable for specializations in the
ASTReader. Then we will only deserialize the specializations with the
same template arguments. We made that by using ODRHash for the template
arguments as the key of the hash table.
To review this patch, I think `ASTReaderDecl::AddLazySpecializations`
may be a good entry point.
|
|
Note that PointerUnion::{is,get} have been soft deprecated in
PointerUnion.h:
// FIXME: Replace the uses of is(), get() and dyn_cast() with
// isa<T>, cast<T> and the llvm::dyn_cast<T>
I'm not touching PointerUnion::dyn_cast for now because it's a bit
complicated; we could blindly migrate it to dyn_cast_if_present, but
we should probably use dyn_cast when the operand is known to be
non-null.
|
|
This reverts commit b5bd19211118c6d43bc525a4e3fb65d2c750d61e.
It brokes multiple llvm bots including clang-x64-windows-msvc
|
|
Currently all the specializations of a template (including
instantiation, specialization and partial specializations) will be
loaded at once if we want to instantiate another instance for the
template, or find instantiation for the template, or just want to
complete the redecl chain.
This means basically we need to load every specializations for the
template once the template declaration got loaded. This is bad since
when we load a specialization, we need to load all of its template
arguments. Then we have to deserialize a lot of unnecessary
declarations.
For example,
```
// M.cppm
export module M;
export template <class T>
class A {};
export class ShouldNotBeLoaded {};
export class Temp {
A<ShouldNotBeLoaded> AS;
};
// use.cpp
import M;
A<int> a;
```
We should a specialization ` A<ShouldNotBeLoaded>` in `M.cppm` and we
instantiate the template `A` in `use.cpp`. Then we will deserialize
`ShouldNotBeLoaded` surprisingly when compiling `use.cpp`. And this
patch tries to avoid that.
Given that the templates are heavily used in C++, this is a pain point
for the performance.
This patch adds MultiOnDiskHashTable for specializations in the
ASTReader. Then we will only deserialize the specializations with the
same template arguments. We made that by using ODRHash for the template
arguments as the key of the hash table.
To review this patch, I think `ASTReaderDecl::AddLazySpecializations`
may be a good entry point.
The patch was reviewed in
https://github.com/llvm/llvm-project/pull/83237 but that PR is a stacked
PR. But I feel the intention of the stacked PRs get lost during the
review process. So I feel it is better to merge the commits into a
single commit instead of merging them in the PR page. It is better for
us to cherry-pick and revert.
|
|
This patch removes `ASTWriter::Context` and starts passing `ASTContext
&` explicitly to functions that actually need it. This is a
non-functional change with the end-goal of being able to write
lightweight PCM files with no `ASTContext` at all.
|
|
argument lists (#106585, #111173)" (#111852)" (#115159)
This reverts commit 2bb3d3a3f32ffaef3d9b6a27db7f1941f0cb1136.
|
|
(#114196)
We made the incorrect assumption that names of fields are unique when
creating their default initializers.
We fix that by keeping track of the instantiaation pattern for field
decls that are placeholder vars,
like we already do for unamed fields.
Fixes #114069
|
|
Follow up to #109133.
|