Age | Commit message (Collapse) | Author | Files | Lines |
|
This removes the delayed typo correction functionality from Clang
(regular typo correction still remains) due to fragility of the
solution.
An RFC was posted here:
https://discourse.llvm.org/t/rfc-removing-support-for-delayed-typo-correction/86631
and while that RFC was asking for folks to consider stepping up to be
maintainers, and we did have a few new contributors show some interest,
experiments show that it's likely worth it to remove this functionality
entirely and focus efforts on improving regular typo correction.
This removal fixes ~20 open issues (quite possibly more), improves
compile time performance by roughly .3-.4%
(https://llvm-compile-time-tracker.com/?config=Overview&stat=instructions%3Au&remote=AaronBallman&sortBy=date),
and does not appear to regress diagnostic behavior in a way we wouldn't
find acceptable.
Fixes #142457
Fixes #139913
Fixes #138850
Fixes #137867
Fixes #137860
Fixes #107840
Fixes #93308
Fixes #69470
Fixes #59391
Fixes #58172
Fixes #46215
Fixes #45915
Fixes #45891
Fixes #44490
Fixes #36703
Fixes #32903
Fixes #23312
Fixes #69874
|
|
Reland with debug traces to try to understand a bug that only happens on
one CI configuration
===
This introduces a way detect the libstdc++ version,
use that to enable workarounds.
The version is cached.
This should make it easier in the future to find and remove
these hacks.
I did not find the need for enabling a hack between or after
specific versions, so it's left as a future exercise.
We can extend this fature to other libraries as the need arise.
===
|
|
Reverts llvm/llvm-project#141977
This causes CI failure that I am unable to reproduce.
https://lab.llvm.org/buildbot/#/builders/168/builds/12688
|
|
This introduces a way detect the libstdc++ version, use that to enable
workarounds.
The version is cached.
This should make it easier in the future to find and remove these hacks.
I did not find the need for enabling a hack between or after specific
versions, so it's left as a future exercise.
We can extend this fature to other libraries as the need arise.
|
|
A bunch of uses of IsFunctionConversion don't use the third argument and
just make a dummy QualType to pass. This splits IsFunctionConversion
into 2 functions, one that just takes 2 arguments and does the check,
and one that does the actual conversion using the 3rd argument. Both
functions can be const and replace current uses appropriately.
|
|
|
|
This statement level construct takes no clauses and has no associated
statement, and simply labels a number of array elements as valid for
caching. The implementation here is pretty simple, but it is a touch of
a special case for parsing, so the parsing code reflects that.
|
|
FunctionParmPackExpr (#125394)
This merges the functionality of ResolvedUnexpandedPackExpr into
FunctionParmPackExpr. I also added a test to show that
https://github.com/llvm/llvm-project/issues/125103 should be fixed with
this. I put the removal of ResolvedUnexpandedPackExpr in its own commit.
Let me know what you think.
Fixes #125103
|
|
This patch was reviewed and approved here:
https://github.com/llvm/llvm-project/pull/119891
However it has been reverted here:
https://github.com/alejandro-alvarez-sonarsource/llvm-project/commit/083df25dc256154cccbc0e127d79fbac4d0583c5
due to a build issue here:
https://lab.llvm.org/buildbot/#/builders/51/builds/10694
This patch is reintroducing the support.
|
|
This reverts commit 070f84ebc89b11df616a83a56df9ac56efbab783.
Buildbot failure:
https://lab.llvm.org/buildbot/#/builders/51/builds/10694
|
|
Implement basic parsing and semantic support for `#pragma omp stripe`
constuct introduced in
https://www.openmp.org/wp-content/uploads/[OpenMP-API-Specification-6-0.pdf](https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-6-0.pdf),
section 11.7.
|
|
The atomic construct is a particularly complicated one. The directive
itself is pretty simple, it has 5 options for the 'atomic-clause'.
However, the associated statement is fairly complicated.
'read' accepts:
v = x;
'write' accepts:
x = expr;
'update' (or no clause) accepts:
x++;
x--;
++x;
--x;
x binop= expr;
x = x binop expr;
x = expr binop x;
'capture' accepts either a compound statement, or:
v = x++;
v = x--;
v = ++x;
v = --x;
v = x binop= expr;
v = x = x binop expr;
v = x = expr binop x;
IF 'capture' has a compound statement, it accepts:
{v = x; x binop= expr; }
{x binop= expr; v = x; }
{v = x; x = x binop expr; }
{v = x; x = expr binop x; }
{x = x binop expr ;v = x; }
{x = expr binop x; v = x; }
{v = x; x = expr; }
{v = x; x++; }
{v = x; ++x; }
{x++; v = x; }
{++x; v = x; }
{v = x; x--; }
{v = x; --x; }
{x--; v = x; }
{--x; v = x; }
While these are all quite complicated, there is a significant amount
of similarity between the 'capture' and 'update' lists, so this patch
reuses a lot of the same functions.
This patch implements the entirety of 'atomic', creating a new Sema file
for the sema for it, as it is fairly sizable.
|
|
This is an implementation of P1061 Structure Bindings Introduce a Pack
without the ability to use packs outside of templates. There is a couple
of ways the AST could have been sliced so let me know what you think.
The only part of this change that I am unsure of is the
serialization/deserialization stuff. I followed the implementation of
other Exprs, but I do not really know how it is tested. Thank you for
your time considering this.
---------
Co-authored-by: Yanzuo Liu <zwuis@outlook.com>
|
|
A SYCL kernel entry point function is a non-member function or a static
member function declared with the `sycl_kernel_entry_point` attribute.
Such functions define a pattern for an offload kernel entry point
function to be generated to enable execution of a SYCL kernel on a
device. A SYCL library implementation orchestrates the invocation of
these functions with corresponding SYCL kernel arguments in response to
calls to SYCL kernel invocation functions specified by the SYCL 2020
specification.
The offload kernel entry point function (sometimes referred to as the
SYCL kernel caller function) is generated from the SYCL kernel entry
point function by a transformation of the function parameters followed
by a transformation of the function body to replace references to the
original parameters with references to the transformed ones. Exactly how
parameters are transformed will be explained in a future change that
implements non-trivial transformations. For now, it suffices to state
that a given parameter of the SYCL kernel entry point function may be
transformed to multiple parameters of the offload kernel entry point as
needed to satisfy offload kernel argument passing requirements.
Parameters that are decomposed in this way are reconstituted as local
variables in the body of the generated offload kernel entry point
function.
For example, given the following SYCL kernel entry point function
definition:
```
template<typename KernelNameType, typename KernelType>
[[clang::sycl_kernel_entry_point(KernelNameType)]]
void sycl_kernel_entry_point(KernelType kernel) {
kernel();
}
```
and the following call:
```
struct Kernel {
int dm1;
int dm2;
void operator()() const;
};
Kernel k;
sycl_kernel_entry_point<class kernel_name>(k);
```
the corresponding offload kernel entry point function that is generated
might look as follows (assuming `Kernel` is a type that requires
decomposition):
```
void offload_kernel_entry_point_for_kernel_name(int dm1, int dm2) {
Kernel kernel{dm1, dm2};
kernel();
}
```
Other details of the generated offload kernel entry point function, such
as its name and calling convention, are implementation details that need
not be reflected in the AST and may differ across target devices. For
that reason, only the transformation described above is represented in
the AST; other details will be filled in during code generation.
These transformations are represented using new AST nodes introduced
with this change. `OutlinedFunctionDecl` holds a sequence of
`ImplicitParamDecl` nodes and a sequence of statement nodes that
correspond to the transformed parameters and function body.
`SYCLKernelCallStmt` wraps the original function body and associates it
with an `OutlinedFunctionDecl` instance. For the example above, the AST
generated for the `sycl_kernel_entry_point<kernel_name>` specialization
would look as follows:
```
FunctionDecl 'sycl_kernel_entry_point<kernel_name>(Kernel)'
TemplateArgument type 'kernel_name'
TemplateArgument type 'Kernel'
ParmVarDecl kernel 'Kernel'
SYCLKernelCallStmt
CompoundStmt
<original statements>
OutlinedFunctionDecl
ImplicitParamDecl 'dm1' 'int'
ImplicitParamDecl 'dm2' 'int'
CompoundStmt
VarDecl 'kernel' 'Kernel'
<initialization of 'kernel' with 'dm1' and 'dm2'>
<transformed statements with redirected references of 'kernel'>
```
Any ODR-use of the SYCL kernel entry point function will (with future
changes) suffice for the offload kernel entry point to be emitted. An
actual call to the SYCL kernel entry point function will result in a
call to the function. However, evaluation of a `SYCLKernelCallStmt`
statement is a no-op, so such calls will have no effect other than to
trigger emission of the offload kernel entry point.
Additionally, as a related change inspired by code review feedback,
these changes disallow use of the `sycl_kernel_entry_point` attribute
with functions defined with a _function-try-block_. The SYCL 2020
specification prohibits the use of C++ exceptions in device functions.
Even if exceptions were not prohibited, it is unclear what the semantics
would be for an exception that escapes the SYCL kernel entry point
function; the boundary between host and device code could be an implicit
noexcept boundary that results in program termination if violated, or
the exception could perhaps be propagated to host code via the SYCL
library. Pending support for C++ exceptions in device code and clear
semantics for handling them at the host-device boundary, this change
makes use of the `sycl_kernel_entry_point` attribute with a function
defined with a _function-try-block_ an error.
|
|
When a destroying delete overload is selected, the destructor is not
automatically called. Therefore, the destructor can be deleted without
causing the program to be ill-formed.
Fixes #46818
|
|
This executable construct has a larger list of clauses than some of the
others, plus has some additional restrictions. This patch implements
the AST node, plus the 'cannot be the body of a if, while, do, switch,
or label' statement restriction. Future patches will handle the
rest of the restrictions, which are based on clauses.
|
|
The 'set' construct is another fairly simple one, it doesn't have an
associated statement and only a handful of allowed clauses. This patch
implements it and all the rules for it, allowing 3 of its for clauses.
The only exception is default_async, which will be implemented in a
future patch, because it isn't just being enabled, it needs a complete
new implementation.
|
|
These two constructs are very simple and similar, and only support 3
different clauses, two of which are already implemented. This patch
adds AST nodes for both constructs, and leaves the device_num clause
unimplemented, but enables the other two.
|
|
The arguments to this are the same as for the 'wait' clause, so this
reuses all of that infrastructure. So all this has to do is support a
pair of clauses that are already implemented (if and async), plus create
an AST node. This patch does so, and adds proper testing.
|
|
These constructs are all very similar and closely related, so this patch
creates the AST nodes for them, serialization, printing/etc.
Additionally the restrictions are all added as tests/todos in the tests,
as those will have to be implemented once we get those clauses implemented.
|
|
(#118687)
Given a `noexcept` operator with an operand that calls `delete`, Clang
was not considering whether the selected `operator delete` function was
a destroying delete or not when inspecting whether the deleted object
type has a throwing destructor. Thus, the operator would return `false`
for a type with a potentially throwing destructor even though that
destructor would not be called due to the destroying delete. Clang now
takes the kind of delete operator into consideration.
Fixes #118660
|
|
Identified with misc-include-cleaner.
|
|
(#115777)
Summary:
Address spaces are used in several embedded and GPU targets to describe
accesses to different types of memory. Currently we use the address
space enumerations to control which address spaces are considered
supersets of eachother, however this is also a target level property as
described by the C standard's passing mentions. This patch allows the
address space checks to use the target information to decide if a
pointer conversion is legal. For AMDGPU and NVPTX, all supported address
spaces can be converted to the default address space.
More semantic checks can be added on top of this, for now I'm mainly
looking to get more standard semantics working for C/C++. Right now the
address space conversions must all be done explicitly in C/C++ unlike
the offloading languages which define their own custom address spaces
that just map to the same target specific ones anyway. The main question
is if this behavior is a function of the target or the language.
|
|
Combined constructs (OpenACC 3.3 section 2.11) are a short-cut for
writing a `loop` construct immediately inside of a `compute` construct.
However, this interaction requires we do additional work to ensure that
we get the semantics between the two correct, as well as diagnostics.
This patch adds the semantic analysis for the constructs (but no
clauses), as well as the AST nodes.
|
|
The 'tile' clause shares quite a bit of the rules with 'collapse', so a
followup patch will add those tests/behaviors. This patch deals with
adding the AST node.
The 'tile' clause takes a series of integer constant expressions, or *.
The asterisk is now represented by a new OpenACCAsteriskSizeExpr node,
else this clause is very similar to others.
|
|
HLSL output parameters are denoted with the `inout` and `out` keywords
in the function declaration. When an argument to an output parameter is
constructed a temporary value is constructed for the argument.
For `inout` pamameters the argument is initialized via copy-initialization
from the argument lvalue expression to the parameter type. For `out`
parameters the argument is not initialized before the call.
In both cases on return of the function the temporary value is written
back to the argument lvalue expression through an implicit assignment
binary operator with casting as required.
This change introduces a new HLSLOutArgExpr ast node which represents
the output argument behavior. The OutArgExpr has three defined children:
- An OpaqueValueExpr of the argument lvalue expression.
- An OpaqueValueExpr of the copy-initialized parameter.
- A BinaryOpExpr assigning the first with the value of the second.
Fixes #87526
---------
Co-authored-by: Damyan Pepper <damyanp@microsoft.com>
Co-authored-by: John McCall <rjmccall@gmail.com>
|
|
a42e515e3a9f3bb4e44389c097b89104d95b9b29
|
|
Add the interchange directive which will be introduced in the upcoming
OpenMP 6.0 specification. A preview has been published in [Technical
Report 12](https://www.openmp.org/wp-content/uploads/openmp-TR12.pdf).
|
|
Add the reverse directive which will be introduced in the upcoming
OpenMP 6.0 specification. A preview has been published in [Technical
Report 12](https://www.openmp.org/wp-content/uploads/openmp-TR12.pdf).
---------
Co-authored-by: Alexey Bataev <a.bataev@outlook.com>
|
|
This patch moves documentation of `Sema` functions from `.cpp` files to `Sema.h` when there was no documentation in the latter, or it can be trivially subsumed. More complicated cases when there's less trivial divergence between documentation attached to declaration and the one attached to implementation are left for a later PR that would require review.
It appears that doxygen can find the documentation for a function defined out-of-line even if it's attached to an implementation, and not declaration. But other tools, e.g. clangd, are not as powerful. So this patch significantly improves autocompletion experience for (at least) clangd-based IDEs.
|
|
(#95846)
3ad31e12ccfc7db25f3cbedc4ee966e7099ac78f changed it so that not all
potentially-evaluated `typeid`s were marked as potentially-throwing, but
I forgot to check the subexpression if the null check of the `typeid`
didn't potentially-throw. This adds that check.
|
|
This commit implements the entirety of the now-accepted [N3017
-Preprocessor
Embed](https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3017.htm) and
its sister C++ paper [p1967](https://wg21.link/p1967). It implements
everything in the specification, and includes an implementation that
drastically improves the time it takes to embed data in specific
scenarios (the initialization of character type arrays). The mechanisms
used to do this are used under the "as-if" rule, and in general when the
system cannot detect it is initializing an array object in a variable
declaration, will generate EmbedExpr AST node which will be expanded by
AST consumers (CodeGen or constant expression evaluators) or expand
embed directive as a comma expression.
This reverts commit
https://github.com/llvm/llvm-project/commit/682d461d5a231cee54d65910e6341769419a67d7.
---------
Co-authored-by: The Phantom Derpstorm <phdofthehouse@gmail.com>
Co-authored-by: Aaron Ballman <aaron@aaronballman.com>
Co-authored-by: cor3ntin <corentinjabot@gmail.com>
Co-authored-by: H. Vetinari <h.vetinari@gmx.com>
|
|
Used to implement CWG2191 where `typeid` for a polymorphic glvalue only
becomes potentially-throwing if the `typeid` operand was already
potentially throwing or a `nullptr` check was inserted:
https://cplusplus.github.io/CWG/issues/2191.html
Also change `Expr::hasSideEffects` for `CXXTypeidExpr` to check the
operand for side-effects instead of always reporting that there are
side-effects
Remove `IsDeref` parameter of `CGCXXABI::shouldTypeidBeNullChecked`
because it should never return `true` if `!IsDeref` (we shouldn't add a
null check that wasn't there in the first place)
|
|
and Obj-C++ by-proxy)" (#95299)
Reverts llvm/llvm-project#68620
Introduce or expose a memory leak and UB, see llvm/llvm-project#68620
|
|
Obj-C++ by-proxy) (#68620)
This commit implements the entirety of the now-accepted [N3017 -
Preprocessor
Embed](https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3017.htm) and
its sister C++ paper [p1967](https://wg21.link/p1967). It implements
everything in the specification, and includes an implementation that
drastically improves the time it takes to embed data in specific
scenarios (the initialization of character type arrays). The mechanisms
used to do this are used under the "as-if" rule, and in general when the
system cannot detect it is initializing an array object in a variable
declaration, will generate EmbedExpr AST node which will be expanded
by AST consumers (CodeGen or constant expression evaluators) or
expand embed directive as a comma expression.
---------
Co-authored-by: Aaron Ballman <aaron@aaronballman.com>
Co-authored-by: cor3ntin <corentinjabot@gmail.com>
Co-authored-by: H. Vetinari <h.vetinari@gmx.com>
Co-authored-by: Podchishchaeva, Mariya <mariya.podchishchaeva@intel.com>
|
|
This patch implements the 'loop' construct AST, as well as the basic
appertainment rule. Additionally, it sets up the 'parent' compute
construct, which is necessary for codegen/other diagnostics.
A 'loop' can apply to a for or range-for loop, otherwise it has no other
restrictions (though some of its clauses do).
|
|
declarations (#90517)
According to [class.mem.general] p8:
> A complete-class context of a class (template) is a
> - function body,
> - default argument,
> - default template argument,
> - _noexcept-specifier_, or
> - default member initializer
>
> within the member-specification of the class or class template.
When testing #90152, it came to my attention that we do _not_ consider
the _noexcept-specifier_ of a friend function declaration to be a
complete-class context (something which the Microsoft standard library
depends on). Although a comment states that this is "consistent with
what other implementations do", the only other implementation that
exhibits this behavior is GCC (MSVC and EDG both late-parse the
_noexcept-specifier_).
This patch changes _noexcept-specifiers_ of friend function declarations
to be late parsed, which is in agreement with the standard & majority of
implementations. Pre-#90152, our existing implementation falls "in
between" the implementation consensus: within non-template classes, we
would not find latter declared members (qualified and unqualified),
while within class templates we would not find latter declared member
when named with a unqualified name, we would find members named with a
qualified name (even when lookup context is the current instantiation).
Therefore, this _shouldn't_ be a breaking change -- any code that didn't
compile will continue to not compile (since a _noexcept-specifier_ is
not part of the deduction substitution
loci (see [temp.deduct.general] p7), and any code which
did compile should continue to do so.
|
|
OpenACC is going to need an array sections implementation that is a
simpler version/more restrictive version of the OpenMP version.
This patch moves `OMPArraySectionExpr` to `Expr.h` and renames it `ArraySectionExpr`,
then adds an enum to choose between the two.
This also fixes a couple of 'drive-by' issues that I discovered on the way,
but leaves the OpenACC Sema parts reasonably unimplemented (no semantic
analysis implementation), as that will be a followup patch.
|
|
warning (#84181)
Signed-off-by: nwh <nwh_work@foxmail.com>
|
|
'serial', 'parallel', and 'kernel' constructs are all considered
'Compute' constructs. This patch creates the AST type, plus the required
infrastructure for such a type, plus some base types that will be useful
in the future for breaking this up.
The only difference between the three is the 'kind'( plus some minor
clause legalization rules, but those can be differentiated easily
enough), so rather than representing them as separate AST nodes, it
seems
to make sense to make them the same.
Additionally, no clause AST functionality is being implemented yet, as
that fits better in a separate patch, and this is enough to get the
'naked' constructs implemented.
This is otherwise an 'NFC' patch, as it doesn't alter execution at all,
so there aren't any tests. I did this to break up the review workload
and to get feedback on the layout.
|
|
Implements https://isocpp.org/files/papers/P2662R3.pdf
The feature is exposed as an extension in older language modes.
Mangling is not yet supported and that is something we will have to do before release.
|
|
This patch implements P0847R7 (partially),
CWG2561 and CWG2653.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D140828
|
|
structured-block
where clause is one of the following:
private(list)
reduction([reduction-modifier ,] reduction-identifier : list)
nowait
Differential Revision: https://reviews.llvm.org/D157933
|
|
This commit implements support for WebAssembly table types and
respective builtins. Table tables are WebAssembly objects to store
reference types. They have a large amount of semantic restrictions
including, but not limited to, only being allowed to be declared
at the top-level as static arrays of zero-length. Not being arguments
or result of functions, not being stored ot memory, etc.
This commit introduces the __attribute__((wasm_table)) to attach to
arrays of WebAssembly reference types. And the following builtins to
manage tables:
* ref __builtin_wasm_table_get(table, idx)
* void __builtin_wasm_table_set(table, idx, ref)
* uint __builtin_wasm_table_size(table)
* uint __builtin_wasm_table_grow(table, ref, uint)
* void __builtin_wasm_table_fill(table, idx, ref, uint)
* void __builtin_wasm_table_copy(table, table, uint, uint, uint)
This commit also enables reference-types feature at bleeding-edge.
This is joint work with Alex Bradbury (@asb).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D139010
|
|
This patch replaces (llvm::|)Optional< with std::optional<. I'll post
a separate patch to remove #include "llvm/ADT/Optional.h".
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
|
|
This patch adds #include <optional> to those files containing
llvm::Optional<...> or Optional<...>.
I'll post a separate patch to actually replace llvm::Optional with
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
|
|
This commit relands the patches for implementing P0960R3 and P1975R0,
which describe initializing aggregates via a parenthesized list.
The relanded commits are:
* 40c52159d3ee - P0960R3 and P1975R0: Allow initializing aggregates from
a parenthesized list of values
* c77a91bb7ba7 - Remove overly restrictive aggregate paren init logic
* 32d7aae04fdb - Fix a clang crash on invalid code in C++20 mode
This patch also fixes a crash in the original implementation.
Previously, if the input tried to call an implicitly deleted copy or
move constructor of a union, we would then try to initialize the union
by initializing it's first element with a reference to a union. This
behavior is incorrect (we should fail to initialize) and if the type of
the first element has a constructor with a single template typename
parameter, then Clang will explode. This patch fixes that issue by
checking that constructor overload resolution did not result in a
deleted function before attempting parenthesized aggregate
initialization.
Additionally, this patch also includes D140159, which contains some
minor fixes made in response to code review comments in the original
implementation that were made after that patch was submitted.
Co-authored-by: Sheng <ox59616e@gmail.com>
Fixes #54040, Fixes #59675
Reviewed By: ilya-biryukov
Differential Revision: https://reviews.llvm.org/D141546
|
|
This feature causes clang to crash when compiling Chrome - see
https://crbug.com/1405031 and
https://github.com/llvm/llvm-project/issues/59675
Revert "[clang] Fix a clang crash on invalid code in C++20 mode."
This reverts commit 32d7aae04fdb58e65a952f281ff2f2c3f396d98f.
Revert "[clang] Remove overly restrictive aggregate paren init logic"
This reverts commit c77a91bb7ba793ec3a6a5da3743ed55056291658.
Revert "[clang][C++20] P0960R3 and P1975R0: Allow initializing aggregates from a parenthesized list of values"
This reverts commit 40c52159d3ee337dbed14e4c73b5616ea354c337.
|
|
parenthesized list of values
This patch implements P0960R3, which allows initialization of aggregates
via parentheses.
As an example:
```
struct S { int i, j; };
S s1(1, 1);
int arr1[2](1, 2);
```
This patch also implements P1975R0, which fixes the wording of P0960R3
for single-argument parenthesized lists so that statements like the
following are allowed:
```
S s2(1);
S s3 = static_cast<S>(1);
S s4 = (S)1;
int (&&arr2)[] = static_cast<int[]>(1);
int (&&arr3)[2] = static_cast<int[2]>(1);
```
This patch was originally authored by @0x59616e and completed by
@ayzhao.
Fixes #54040, Fixes #54041
Co-authored-by: Sheng <ox59616e@gmail.com>
Full write up : https://discourse.llvm.org/t/c-20-rfc-suggestion-desired-regarding-the-implementation-of-p0960r3/63744
Reviewed By: ilya-biryukov
Differential Revision: https://reviews.llvm.org/D129531
|
|
Differential Revision: https://reviews.llvm.org/D137209
|