aboutsummaryrefslogtreecommitdiff
path: root/mlir/test/Dialect/Linalg/shard-partition.mlir
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/test/Dialect/Linalg/shard-partition.mlir')
-rw-r--r--mlir/test/Dialect/Linalg/shard-partition.mlir164
1 files changed, 164 insertions, 0 deletions
diff --git a/mlir/test/Dialect/Linalg/shard-partition.mlir b/mlir/test/Dialect/Linalg/shard-partition.mlir
new file mode 100644
index 0000000..aee9707
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/shard-partition.mlir
@@ -0,0 +1,164 @@
+// RUN: mlir-opt \
+// RUN: --pass-pipeline="builtin.module(func.func(shard-partition,test-single-fold))" \
+// RUN: --split-input-file \
+// RUN: %s | FileCheck %s
+
+// CHECK: #[[$MAP_IDENTITY_1D:.*]] = affine_map<(d0) -> (d0)>
+#map_identity_1d = affine_map<(d0) -> (d0)>
+
+shard.grid @grid_1d(shape = 2)
+
+// CHECK-LABEL: func @elementwise_static_1d_grid_static_1d_tensor
+func.func @elementwise_static_1d_grid_static_1d_tensor(
+ // CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<1xi8>,
+ %in1: tensor<2xi8>,
+ // CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<1xi8>,
+ %in2: tensor<2xi8>,
+ // CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<1xi8>
+ %dps_out: tensor<2xi8>
+// CHECK-SAME: -> tensor<1xi8> {
+) -> tensor<2xi8> {
+ %sharding = shard.sharding @grid_1d split_axes = [[0]] : !shard.sharding
+ %in1_sharded1 = shard.shard %in1 to %sharding : tensor<2xi8>
+ %in1_sharded2 = shard.shard %in1_sharded1 to %sharding annotate_for_users : tensor<2xi8>
+ %in2_sharded1 = shard.shard %in2 to %sharding : tensor<2xi8>
+ %in2_sharded2 = shard.shard %in2_sharded1 to %sharding annotate_for_users : tensor<2xi8>
+ %dps_out_sharded1 = shard.shard %dps_out to %sharding : tensor<2xi8>
+ %dps_out_shared2 = shard.shard %dps_out_sharded1 to %sharding annotate_for_users : tensor<2xi8>
+ // CHECK: %[[RES:.*]] = linalg.generic {
+ // CHECK-SAME: indexing_maps = [#[[$MAP_IDENTITY_1D]], #[[$MAP_IDENTITY_1D]], #[[$MAP_IDENTITY_1D]]],
+ // CHECK-SAME: iterator_types = ["parallel"]}
+ // CHECK-SAME: ins(%[[IN1]], %[[IN2]] : tensor<1xi8>, tensor<1xi8>)
+ // CHECK-SAME: outs(%[[DPS_OUT]] : tensor<1xi8>) {
+ %res = linalg.generic {
+ indexing_maps = [#map_identity_1d, #map_identity_1d, #map_identity_1d],
+ iterator_types = ["parallel"]
+ } ins(%in1_sharded2, %in2_sharded2 : tensor<2xi8>, tensor<2xi8>)
+ outs(%dps_out_shared2 : tensor<2xi8>) {
+ ^bb0(%in1_scalar: i8, %in2_scalar: i8, %out: i8):
+ %res_scalar = arith.muli %in1_scalar, %in2_scalar : i8
+ linalg.yield %res_scalar : i8
+ } -> tensor<2xi8>
+ %res_sharded1 = shard.shard %res to %sharding : tensor<2xi8>
+ %res_shared2 = shard.shard %res_sharded1 to %sharding annotate_for_users : tensor<2xi8>
+ // CHECK: return %[[RES]] : tensor<1xi8>
+ return %res_shared2 : tensor<2xi8>
+}
+
+// -----
+
+shard.grid @grid_1d(shape = 4)
+
+// CHECK-LABEL: func @matmul_1d_grid_static_tensors_parallel_iterator_sharding
+func.func @matmul_1d_grid_static_tensors_parallel_iterator_sharding(
+ // CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<1x3xi8>,
+ %in1: tensor<4x3xi8>,
+// CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<3x8xi8>,
+ %in2: tensor<3x8xi8>,
+// CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<1x8xi8>
+ %dps_out: tensor<4x8xi8>
+// CHECK-SAME: -> tensor<1x8xi8> {
+) -> tensor<4x8xi8> {
+ %sharding = shard.sharding @grid_1d split_axes = [[0]] : !shard.sharding
+ %in1_shared1 = shard.shard %in1 to %sharding : tensor<4x3xi8>
+ %in1_shared2 = shard.shard %in1_shared1 to %sharding annotate_for_users : tensor<4x3xi8>
+ %sharding2 = shard.sharding @grid_1d split_axes = [[]] : !shard.sharding
+ %in2_shared1 = shard.shard %in2 to %sharding2 : tensor<3x8xi8>
+ %in2_shared2 = shard.shard %in2_shared1 to %sharding2 annotate_for_users : tensor<3x8xi8>
+ %dps_out_shared1 = shard.shard %dps_out to %sharding : tensor<4x8xi8>
+ %dps_out_shared2 = shard.shard %dps_out_shared1 to %sharding annotate_for_users : tensor<4x8xi8>
+ // CHECK: %[[RES:.*]] = linalg.matmul
+ // CHECK-SAME: ins(%[[IN1]], %[[IN2]] : tensor<1x3xi8>, tensor<3x8xi8>)
+ // CHECK-SAME: outs(%[[DPS_OUT]] : tensor<1x8xi8>)
+ // CHECK-SAME: -> tensor<1x8xi8>
+ %res = linalg.matmul ins(%in1_shared2, %in2_shared2 : tensor<4x3xi8>, tensor<3x8xi8>)
+ outs(%dps_out_shared2 : tensor<4x8xi8>) -> tensor<4x8xi8>
+ %res_shared1 = shard.shard %res to %sharding : tensor<4x8xi8>
+ %res_shared2 = shard.shard %res_shared1 to %sharding annotate_for_users : tensor<4x8xi8>
+ // CHECK: return %[[RES]] : tensor<1x8xi8>
+ return %res_shared2 : tensor<4x8xi8>
+}
+
+// -----
+
+shard.grid @grid_1d(shape = 3)
+
+// CHECK-LABEL: func @matmul_1d_grid_static_tensors_reduction_iterator_sharding
+func.func @matmul_1d_grid_static_tensors_reduction_iterator_sharding(
+ // CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<4x2xi8>,
+ %in1: tensor<4x6xi8>,
+// CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<2x8xi8>,
+ %in2: tensor<6x8xi8>,
+// CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<4x8xi8>
+ %dps_out: tensor<4x8xi8>
+// CHECK-SAME: -> tensor<4x8xi8> {
+) -> tensor<4x8xi8> {
+ %sharding = shard.sharding @grid_1d split_axes = [[], [0]] : !shard.sharding
+ %in1_shared1 = shard.shard %in1 to %sharding : tensor<4x6xi8>
+ %in1_shared2 = shard.shard %in1_shared1 to %sharding annotate_for_users : tensor<4x6xi8>
+ %sharding2 = shard.sharding @grid_1d split_axes = [[0]] : !shard.sharding
+ %in2_shared1 = shard.shard %in2 to %sharding2 : tensor<6x8xi8>
+ %in2_shared2 = shard.shard %in2_shared1 to %sharding2 annotate_for_users : tensor<6x8xi8>
+ %sharding3 = shard.sharding @grid_1d split_axes = [[]] : !shard.sharding
+ %dps_out_shared1 = shard.shard %dps_out to %sharding3 : tensor<4x8xi8>
+ %dps_out_shared2 = shard.shard %dps_out_shared1 to %sharding3 annotate_for_users : tensor<4x8xi8>
+ // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
+ // CHECK-DAG: %[[C0_I8:.*]] = arith.constant 0 : i8
+ // CHECK-DAG: %[[PROCESS_IDX:.*]] = shard.process_multi_index on @grid_1d axes = [0] : index
+ // CHECK-DAG: %[[SHARD_SIZE:.*]] = shard.grid_shape @grid_1d axes = [0] : index
+ // CHECK: %[[DPS_INIT_OPERAND_CONDITION:.*]] = arith.cmpi eq, %[[PROCESS_IDX]], %[[C0]] : index
+ // CHECK: %[[DPS_INIT_OPERAND:.*]] = scf.if %[[DPS_INIT_OPERAND_CONDITION]] -> (tensor<4x8xi8>) {
+ // CHECK: scf.yield %[[DPS_OUT]] : tensor<4x8xi8>
+ // CHECK: } else {
+ // CHECK-DAG: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<4x8xi8>
+ // CHECK: %[[NEUTRAL_ELEMENT_FILLED_TENSOR:.*]] = linalg.fill ins(%[[C0_I8]] : i8)
+ // CHECK-SAME: outs(%[[EMPTY_TENSOR]] : tensor<4x8xi8>) -> tensor<4x8xi8>
+ // CHECK: scf.yield %[[NEUTRAL_ELEMENT_FILLED_TENSOR]] : tensor<4x8xi8>
+ // CHECK: }
+ // CHECK: %[[SHARDED_MATMUL:.*]] = linalg.matmul ins(%[[IN1]], %[[IN2]] : tensor<4x2xi8>, tensor<2x8xi8>)
+ // CHECK-SAME: outs(%[[DPS_INIT_OPERAND]] : tensor<4x8xi8>) -> tensor<4x8xi8>
+ // CHECK: %[[ALL_REDUCED:.*]] = shard.all_reduce %[[SHARDED_MATMUL]] on @grid_1d grid_axes = [0] : tensor<4x8xi8> -> tensor<4x8xi8>
+ %res = linalg.matmul ins(%in1_shared2, %in2_shared2 : tensor<4x6xi8>, tensor<6x8xi8>)
+ outs(%dps_out_shared2 : tensor<4x8xi8>) -> tensor<4x8xi8>
+ %res_shared1 = shard.shard %res to %sharding3 : tensor<4x8xi8>
+ %res_shared2 = shard.shard %res_shared1 to %sharding3 annotate_for_users : tensor<4x8xi8>
+ // CHECK: return %[[ALL_REDUCED]] : tensor<4x8xi8>
+ return %res_shared2 : tensor<4x8xi8>
+}
+
+// -----
+
+shard.grid @grid_1d(shape = 4)
+
+// CHECK-LABEL: func @matmul_1d_grid_static_tensors_parallel_iterator_unsplit_last_axis
+func.func @matmul_1d_grid_static_tensors_parallel_iterator_unsplit_last_axis(
+ // CHECK-SAME: %[[IN1:[A-Za-z0-9_]+]]: tensor<4x6xi8>,
+ %in1: tensor<4x6xi8>,
+ // CHECK-SAME: %[[IN2:[A-Za-z0-9_]+]]: tensor<6x8xi8>,
+ %in2: tensor<6x8xi8>,
+ // CHECK-SAME: %[[DPS_OUT:[A-Za-z0-9_]+]]: tensor<4x8xi8>
+ %dps_out: tensor<4x8xi8>
+ // CHECK-SAME: -> tensor<4x8xi8> {
+) -> tensor<4x8xi8> {
+ %sharding1 = shard.sharding @grid_1d split_axes = [[], []] : !shard.sharding
+ %in1_replicated1 = shard.shard %in1 to %sharding1 : tensor<4x6xi8>
+ %in1_replicated2 = shard.shard %in1_replicated1 to %sharding1 annotate_for_users : tensor<4x6xi8>
+ // CHECK: %[[ALL_SLICE1:.*]] = shard.all_slice %[[IN2]] on @grid_1d grid_axes = [0] slice_axis = 1
+ %in2_replicated = shard.shard %in2 to %sharding1 : tensor<6x8xi8>
+ %sharding2 = shard.sharding @grid_1d split_axes = [[], [0]] : !shard.sharding
+ %in2_sharded = shard.shard %in2_replicated to %sharding2 annotate_for_users : tensor<6x8xi8>
+ // CHECK: %[[ALL_SLICE2:.*]] = shard.all_slice %[[DPS_OUT]] on @grid_1d grid_axes = [0] slice_axis = 1
+ %dps_out_replicated = shard.shard %dps_out to %sharding1 : tensor<4x8xi8>
+ %dps_out_sharded = shard.shard %dps_out_replicated to %sharding2 annotate_for_users : tensor<4x8xi8>
+ // CHECK: %[[MATMUL_RES:.*]] = linalg.matmul
+ // CHECK-SAME: ins(%[[IN1]], %[[ALL_SLICE1]] : tensor<4x6xi8>, tensor<6x2xi8>)
+ // CHECK-SAME: outs(%[[ALL_SLICE2]] : tensor<4x2xi8>)
+ // CHECK-SAME: -> tensor<4x2xi8>
+ %res = linalg.matmul ins(%in1_replicated2, %in2_sharded : tensor<4x6xi8>, tensor<6x8xi8>)
+ outs(%dps_out_sharded : tensor<4x8xi8>) -> tensor<4x8xi8>
+ // CHECK: %[[ALL_GATHER:.*]] = shard.all_gather %[[MATMUL_RES]] on @grid_1d grid_axes = [0] gather_axis = 1 : tensor<4x2xi8> -> tensor<4x8xi8>
+ %res_sharded = shard.shard %res to %sharding2 : tensor<4x8xi8>
+ %res_replicated = shard.shard %res_sharded to %sharding1 annotate_for_users : tensor<4x8xi8>
+ // CHECK: return %[[ALL_GATHER]] : tensor<4x8xi8>
+ return %res_replicated : tensor<4x8xi8>
+}